qwen-360-diffusion / create_360_sweep_frames.py
ProGamerGov's picture
Add example video script
3e2b852 verified
"""
Install dependencies:
pip install pytorch360convert
Example ffmpeg command to use on output frames:
ffmpeg -framerate 60 -i output_frames/sweep360_%06d.png -c:v libx264 -pix_fmt yuv420p my_360_video.mp4
# Example for calculating FOV to use for specific dimensions
import math
width, height = 1280, 896
ratio = width / height
vfov_deg = 70.0
vfov = math.radians(vfov_deg)
hfov = 2 * math.atan(ratio * math.tan(vfov / 2))
hfov_deg = math.degrees(hfov)
print(hfov_deg) # ~90.02°
"""
import math
import os
from typing import Dict, List, Optional, Tuple, Union
import torch
from pytorch360convert import e2p
from PIL import Image
import numpy as np
from tqdm import tqdm
def load_image_to_tensor(path: str, device: Optional[torch.device] = None) -> torch.Tensor:
"""
Load an image file to a float torch tensor in CHW format, range [0,1].
"""
img = Image.open(path).convert("RGB")
arr = np.array(img).astype(np.float32) / 255.0 # HWC float32
t = torch.from_numpy(arr) # HWC
t = t.permute(2, 0, 1) # CHW
if device is not None:
t = t.to(device)
return t
def _linear_progress(n_frames: int) -> List[float]:
"""
Generate a linear progression from 0.0 to 1.0 over n_frames.
Args:
n_frames (int): Number of frames.
Returns:
List[float]: List of normalized progress values.
"""
return [i / max(1, (n_frames - 1)) for i in range(n_frames)]
def _ease_in_out_progress(n_frames: int) -> List[float]:
"""
Generate an ease-in-out progression (cosine smoothing) from 0.0 to 1.0.
Args:
n_frames (int): Number of frames.
Returns:
List[float]: List of normalized progress values.
"""
return [
0.5 * (1 - math.cos(math.pi * (i / max(1, (n_frames - 1)))))
for i in range(n_frames)
]
def _save_tensor_as_image(tensor: torch.Tensor, path: str) -> None:
"""
Save a CHW float tensor (range [0, 1]) to directory
"""
if tensor.dim() == 4: # [B,H,W,C] -> take first
tensor = tensor[0]
tensor = tensor.permute(1, 2, 0)
t = tensor.detach().cpu().clamp(0.0, 1.0) * 255.0
Image.fromarray(t.to(dtype=torch.uint8).numpy()).save(path)
def generate_frames_from_equirect(
equi_tensors: List[torch.Tensor],
out_dir: str,
resolution: Tuple[int, int] = (1080, 1920),
fps: int = 30,
duration_per_image: Optional[float] = 4.0,
total_duration: Optional[float] = None,
fov_deg: Union[float, Tuple[float, float]] = (70.0, 60.0),
interpolation_mode: str = "bilinear",
speed_profile: str = "constant",
vertical_movement: Optional[Dict] = None,
device: Optional[torch.device] = None,
start_frame_index: int = 0,
save_format: str = "png",
start_yaw_deg: float = 0.0,
end_yaw_deg: float = 360.0,
filename_prefix: str = "frame",
verbose: bool = True,
) -> List[str]:
"""
Generate video frames by sweeping through one or more equirectangular images.
Args:
equi_tensors (List[torch.Tensor]): List of equirectangular image tensors.
out_dir (str): Output directory where frames will be saved.
resolution (tuple of int): Output frame resolution as (height, width). Default: (1080, 1920)
fps (int): Frames per second for timing calculations. Default: 30
duration_per_image (float): Duration in seconds for each image sweep. Default: 4.0
total_duration (float): Total duration in seconds for all images combined. Default: None
fov_deg (float or tuple): Field of view in degrees. Default: (70.0, 60.0)
interpolation_mode (str): Resampling interpolation. Options: "nearest", "bilinear", "bicubic". Default: "bilinear"
speed_profile (str): Progression curve. Options: "constant", "ease_in_out". Default: "constant"
vertical_movement (dict): Parameters for adding pitch movement. Default: None
device (torch.device): Torch device to run on. Default: cpu
start_frame_index (int): Starting frame index for naming. Default: 0
save_format (str): Image format. Options: "png", "jpg", "jpeg", "bmp". Default: "png"
start_yaw_deg (float): Starting yaw angle in degrees. Default: 0.0
end_yaw_deg (float): Ending yaw angle in degrees. Default: 360.0
filename_prefix (str): Prefix for saved frame filenames. Default: "frame"
verbose (bool): Print progress information. Default: True
Returns:
List[str]: List of file paths for the saved frames.
"""
os.makedirs(out_dir, exist_ok=True)
device = device if device is not None else torch.device("cpu")
saved_paths = []
n_images = len(equi_tensors)
if n_images == 0:
return saved_paths
# Decide frames per image
if total_duration is not None:
assert total_duration > 0
seconds_per_image = total_duration / n_images
else:
seconds_per_image = duration_per_image if duration_per_image is not None else 4.0
frames_per_image = max(1, int(round(seconds_per_image * fps)))
# Calculate degrees per frame for consistent speed
vm = vertical_movement or {"mode": "none"}
vm_mode = vm.get("mode", "none")
horizontal_distance = abs(end_yaw_deg - start_yaw_deg)
degrees_per_frame = horizontal_distance / frames_per_image
# Calculate total frames for progress tracking
total_frames = n_images * frames_per_image
# Add extra frames for separate pole sweep if enabled
if vm_mode == "separate" or vm_mode == "both":
# Pole sweep path: level (0°) -> down (-85°) -> up (+85°) -> level (0°) = 340° total
vertical_distance = 340.0
pole_frames = max(1, int(round(vertical_distance / degrees_per_frame)))
total_frames += n_images * pole_frames
# Choose progress function
if speed_profile == "constant":
progress_fn = _linear_progress
elif speed_profile == "ease_in_out":
progress_fn = _ease_in_out_progress
else:
raise ValueError("speed_profile must be 'constant' or 'ease_in_out'")
frame_idx = start_frame_index
current_frame = 0
e2p_jit = e2p
yaw_start, yaw_end = start_yaw_deg, end_yaw_deg
for img_idx, e_img in enumerate(equi_tensors):
if verbose:
print(f"Processing image {img_idx + 1}/{n_images}...")
n = frames_per_image
prog = progress_fn(n)
yaw_values = [yaw_start + p * (yaw_end - yaw_start) for p in prog]
# Vertical values
if vm_mode == "during" or vm_mode == "both":
amplitude = float(vm.get("amplitude_deg", 15.0))
vertical_pattern = vm.get("pattern", "sine")
if vertical_pattern == "sine":
v_values = [amplitude * math.sin(2 * math.pi * p) for p in prog]
else:
v_values = [amplitude * (2 * p - 1) for p in prog]
else:
v_values = [0.0] * n
# Rotation frames
for i_frame in tqdm(range(n), desc=f"Image {img_idx + 1} rotation", disable=not verbose):
h_deg = yaw_values[i_frame]
v_deg = v_values[i_frame]
pers = e2p_jit(
e_img,
fov_deg=fov_deg,
h_deg=h_deg,
v_deg=v_deg,
out_hw=resolution,
mode=interpolation_mode,
channels_first=True,
).unsqueeze(0)
filename = f"{filename_prefix}_{frame_idx:06d}.{save_format}"
path = os.path.join(out_dir, filename)
_save_tensor_as_image(pers, path)
saved_paths.append(path)
frame_idx += 1
current_frame += 1
# Optional separate pole sweep - continues from end position
if vm_mode == "separate" or vm_mode == "both":
if verbose:
print(f" Generating pole sweep for image {img_idx + 1}...")
# Continue from the ending yaw position
final_yaw = yaw_values[-1]
# Calculate frames based on angular distance to maintain constant speed
horizontal_distance = abs(yaw_end - yaw_start)
degrees_per_frame = horizontal_distance / frames_per_image
# Vertical path: 0° -> -85° -> +85° -> 0° = 340° total
vertical_distance = 340.0
pole_frames = max(1, int(round(vertical_distance / degrees_per_frame)))
if verbose:
print(f" Horizontal: {horizontal_distance}° in {frames_per_image} frames ({degrees_per_frame:.2f}°/frame)")
print(f" Vertical: {vertical_distance}° in {pole_frames} frames ({degrees_per_frame:.2f}°/frame)")
# Use linear progress for consistent speed throughout
pole_progress = _linear_progress(pole_frames)
pole_v_values = []
# Phase distances: 85° down, 170° up, 85° down
total_distance = 340.0
phase1_distance = 85.0 # Level to bottom
phase2_distance = 170.0 # Bottom to top
phase3_distance = 85.0 # Top to level
for p in pole_progress:
current_distance = p * total_distance
if current_distance <= phase1_distance:
# Phase 1: Level (0°) -> Down (-85°)
phase_progress = current_distance / phase1_distance
v_deg = 0.0 - (85.0 * phase_progress)
elif current_distance <= phase1_distance + phase2_distance:
# Phase 2: Down (-85°) -> Up (+85°)
phase_progress = (current_distance - phase1_distance) / phase2_distance
v_deg = -85.0 + (170.0 * phase_progress)
else:
# Phase 3: Up (+85°) -> Level (0°)
phase_progress = (current_distance - phase1_distance - phase2_distance) / phase3_distance
v_deg = 85.0 - (85.0 * phase_progress)
pole_v_values.append(v_deg)
for pole_idx, v_deg in tqdm(enumerate(pole_v_values), total=len(pole_v_values), desc=f"Image {img_idx + 1} pole sweep", disable=not verbose):
pers = e2p(
e_img,
fov_deg=fov_deg,
h_deg=final_yaw,
v_deg=v_deg,
out_hw=resolution,
mode=interpolation_mode,
channels_first=True,
)
filename = f"{filename_prefix}_{frame_idx:06d}.{save_format}"
path = os.path.join(out_dir, filename)
_save_tensor_as_image(pers, path)
saved_paths.append(path)
frame_idx += 1
current_frame += 1
if verbose:
print(f"\nCompleted! Generated {len(saved_paths)} frames in {out_dir}")
return saved_paths
def main():
"""
Main function - configure your parameters here
"""
# Configuration
IMAGE_PATHS = ["path/to/equi_image.jpg"]
OUTPUT_DIR = "path/to/output_frames"
start_idx = 0
# Frame generation settings
WIDTH = 1280
HEIGHT = 896
FPS = 60
DURATION_PER_IMAGE = 10.0
FOV_HORIZONTAL = 90.0169847156118
FOV_VERTICAL = 70
# Movement settings
SPEED_PROFILE = "constant" # "constant" or "ease_in_out"
START_YAW = 0.0
END_YAW = 360.0
# Vertical movement (set mode to "none" to disable)
VERTICAL_MOVEMENT = {
"mode": "separate", # "none", "during", "separate", or "both"
"amplitude_deg": 90.0,
"pattern": "sine", # "sine" or "linear"
}
# Other settings
INTERPOLATION_MODE = "bilinear" # "bilinear", "bicubic", or "nearest"
SAVE_FORMAT = "png" # "png", "jpg", "jpeg", or "bmp"
FILENAME_PREFIX = "sweep360"
DEVICE = "cuda:0"
# Load images as tensors
equi_tensors = []
for img_path in IMAGE_PATHS:
equi_tensors.append(load_image_to_tensor(img_path, DEVICE))
if not equi_tensors:
print("No images loaded. Please add your equirectangular images.")
return
# Generate frames
saved_paths = generate_frames_from_equirect(
equi_tensors=equi_tensors,
out_dir=OUTPUT_DIR,
resolution=(HEIGHT, WIDTH),
fps=FPS,
duration_per_image=DURATION_PER_IMAGE,
fov_deg=(FOV_HORIZONTAL, FOV_VERTICAL),
interpolation_mode=INTERPOLATION_MODE,
speed_profile=SPEED_PROFILE,
vertical_movement=VERTICAL_MOVEMENT,
start_yaw_deg=START_YAW,
end_yaw_deg=END_YAW,
save_format=SAVE_FORMAT,
filename_prefix=FILENAME_PREFIX,
verbose=True,
start_frame_index=start_idx,
)
print(f"Successfully generated {len(saved_paths)} frames")
if __name__ == "__main__":
main()