First version of the First Assignment of the DRL course
Browse files- README.md +37 -0
- config.json +1 -0
- ppo_LunarLander-v2_Priyansh.zip +3 -0
- ppo_LunarLander-v2_Priyansh/_stable_baselines3_version +1 -0
- ppo_LunarLander-v2_Priyansh/data +95 -0
- ppo_LunarLander-v2_Priyansh/policy.optimizer.pth +3 -0
- ppo_LunarLander-v2_Priyansh/policy.pth +3 -0
- ppo_LunarLander-v2_Priyansh/pytorch_variables.pth +3 -0
- ppo_LunarLander-v2_Priyansh/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: stable-baselines3
|
| 3 |
+
tags:
|
| 4 |
+
- LunarLander-v2
|
| 5 |
+
- deep-reinforcement-learning
|
| 6 |
+
- reinforcement-learning
|
| 7 |
+
- stable-baselines3
|
| 8 |
+
model-index:
|
| 9 |
+
- name: PPO
|
| 10 |
+
results:
|
| 11 |
+
- task:
|
| 12 |
+
type: reinforcement-learning
|
| 13 |
+
name: reinforcement-learning
|
| 14 |
+
dataset:
|
| 15 |
+
name: LunarLander-v2
|
| 16 |
+
type: LunarLander-v2
|
| 17 |
+
metrics:
|
| 18 |
+
- type: mean_reward
|
| 19 |
+
value: 257.36 +/- 21.16
|
| 20 |
+
name: mean_reward
|
| 21 |
+
verified: false
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
| 25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
| 26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
| 27 |
+
|
| 28 |
+
## Usage (with Stable-baselines3)
|
| 29 |
+
TODO: Add your code
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
```python
|
| 33 |
+
from stable_baselines3 import ...
|
| 34 |
+
from huggingface_sb3 import load_from_hub
|
| 35 |
+
|
| 36 |
+
...
|
| 37 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f58e7573040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f58e75730d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f58e7573160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f58e75731f0>", "_build": "<function ActorCriticPolicy._build at 0x7f58e7573280>", "forward": "<function ActorCriticPolicy.forward at 0x7f58e7573310>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f58e75733a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f58e7573430>", "_predict": "<function ActorCriticPolicy._predict at 0x7f58e75734c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f58e7573550>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f58e75735e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f58e7573670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f58e7574240>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679654999257901589, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJr03Ty4pqi53FKTuWYBobQMhKw7hgusOAAAgD8AAIA/ptaRPbwVtT7iyCu+hqI2vrixuL3soYQ9AAAAAAAAAAAAGYI8uuqdPt6MWz0HxVG+1a2mvQfgEj4AAAAAAAAAALPtVj21OpM+lp84vtTzGL5ysJK94do+vAAAAAAAAAAAjUm2vTyhoj7NfjQ+8iKZvk4uaD1uLFS9AAAAAAAAAADNRJG8OBnLu8ZrrjlAch88wngWPYv8C70AAIA/AACAP83g87zbFZe82miiPHfmtjx7cAM+WxyQvQAAgD8AAIA/jSL+PQPdXbyiSZu8AGfXPEAvyT3tnq+9AACAPwAAgD/m9zG9SEOJupLqTztWRI82HMBCucvwbroAAIA/AAAAAFo8jj354yc+w642vLy8Mb5kBxC9u512PQAAAAAAAAAAAJj2PLgmvLmKFgI4mjvgMmBB0zpVdxm3AACAPwAAgD+aGY66pUkCPioCZr078n++4sbwvLU+xTwAAAAAAAAAAKbej77owAo/Gx2JPVaCsr5ti8+9iSCvvAAAAAAAAAAARllNvlg8eD/L5Gm9hIOYvhc+ir32l+o9AAAAAAAAAAAAN/W8IvetP6Z9Pb/XjR2/Iqy7PDpobD0AAAAAAAAAAABSIL2uz6G6pbBIuqRibbbqHew6cJtlOQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9yAE5EuecUCUhpRSlIwBbJRNVAGMAXSUR0CUaj8F6iTMdX2UKGgGaAloD0MIwR9+/rv7cECUhpRSlGgVTXkBaBZHQJRq36TGHYZ1fZQoaAZoCWgPQwjvGvSlty1wQJSGlFKUaBVNSgFoFkdAlGstJjDsMXV9lChoBmgJaA9DCO3UXG4wxm1AlIaUUpRoFU1RAWgWR0CUa+QXAM2FdX2UKGgGaAloD0MIFqWEYNUOckCUhpRSlGgVTREBaBZHQJRsD9YOlO51fZQoaAZoCWgPQwj2s1iK5ClwQJSGlFKUaBVNIgFoFkdAlG29Oh0yQHV9lChoBmgJaA9DCKLrwg9OmW9AlIaUUpRoFU1kAWgWR0CUcLTH80k4dX2UKGgGaAloD0MI6DI1CV5/cECUhpRSlGgVTRYBaBZHQJRxlr1uivh1fZQoaAZoCWgPQwiis8wiFL1vQJSGlFKUaBVNiQFoFkdAlIzV7MPjGXV9lChoBmgJaA9DCHIz3IDPrnBAlIaUUpRoFU09AWgWR0CUjTKwY+B6dX2UKGgGaAloD0MIRKZ8COpjcECUhpRSlGgVTVIBaBZHQJSOaU5dWyV1fZQoaAZoCWgPQwiHUKVmT3ZyQJSGlFKUaBVNgQFoFkdAlJHh5C4SYnV9lChoBmgJaA9DCDhIiPKFtG9AlIaUUpRoFU0wAWgWR0CUlDBtDUmVdX2UKGgGaAloD0MIDMhe7374ckCUhpRSlGgVTR0BaBZHQJSUNxPwd811fZQoaAZoCWgPQwigi4aMR7FVQJSGlFKUaBVN6ANoFkdAlJR/AoG6gHV9lChoBmgJaA9DCE6c3O9QmG9AlIaUUpRoFU1eAWgWR0CUlKYUFjd6dX2UKGgGaAloD0MIlgUTf1TJcECUhpRSlGgVTRQBaBZHQJSWUtNBWxR1fZQoaAZoCWgPQwiCAYQP5eZxQJSGlFKUaBVNYwFoFkdAlJc0aqCHynV9lChoBmgJaA9DCFZFuMno+3FAlIaUUpRoFU1RAWgWR0CUl5IZIg/1dX2UKGgGaAloD0MILNSa5p04cUCUhpRSlGgVTVsBaBZHQJSX4IiTt9h1fZQoaAZoCWgPQwgNAFXc+J5xQJSGlFKUaBVNRQFoFkdAlJ4ne7+T/3V9lChoBmgJaA9DCOer5GP3lG9AlIaUUpRoFU0fAWgWR0CUnykpI+W4dX2UKGgGaAloD0MInRA66JIqcECUhpRSlGgVTUcBaBZHQJSfiEeyRjl1fZQoaAZoCWgPQwhD5zV2CStuQJSGlFKUaBVNWgFoFkdAlKOTTa0x/XV9lChoBmgJaA9DCML6P4f5SWJAlIaUUpRoFU3oA2gWR0CUpg9/jKgadX2UKGgGaAloD0MIDi4dc56zb0CUhpRSlGgVTTMBaBZHQJSnB8w5/9Z1fZQoaAZoCWgPQwj7WwLwj0RyQJSGlFKUaBVNfAFoFkdAlKd9dZ7ojnV9lChoBmgJaA9DCEFl/PsMb2xAlIaUUpRoFU0mAWgWR0CUp/fe1rqMdX2UKGgGaAloD0MIUKkSZa9FcUCUhpRSlGgVTT8BaBZHQJSo9qBVdX11fZQoaAZoCWgPQwhjDRe5pz1vQJSGlFKUaBVNPAFoFkdAlKljNQj2SXV9lChoBmgJaA9DCAd+VMN+mW9AlIaUUpRoFU1dAWgWR0CUq3/4ZdfLdX2UKGgGaAloD0MIblD7rZ3db0CUhpRSlGgVTTwBaBZHQJSrm6asp5N1fZQoaAZoCWgPQwhU5uYb0WRxQJSGlFKUaBVNRwFoFkdAlLFJzo2XLXV9lChoBmgJaA9DCB5Pyw9cL29AlIaUUpRoFU1kAWgWR0CUsnvSMLncdX2UKGgGaAloD0MIcHuCxPb1cECUhpRSlGgVTSMBaBZHQJSzrTEzfrN1fZQoaAZoCWgPQwjtDFNbagVzQJSGlFKUaBVNPQFoFkdAlLSSAtnPFHV9lChoBmgJaA9DCAr19BF4Dm1AlIaUUpRoFU15AWgWR0CUtKOLiuMddX2UKGgGaAloD0MIR+UmainxcECUhpRSlGgVTUUBaBZHQJS19pItlI51fZQoaAZoCWgPQwjvIHamUFdwQJSGlFKUaBVNVgNoFkdAlLdgI6bONnV9lChoBmgJaA9DCO60NSKYgGxAlIaUUpRoFU0nAWgWR0CUuoUI9kjHdX2UKGgGaAloD0MIX36nyQywbkCUhpRSlGgVTUsBaBZHQJS64D8tPHl1fZQoaAZoCWgPQwhz8iITcFpxQJSGlFKUaBVNLgFoFkdAlL3+mixmkHV9lChoBmgJaA9DCFpG6j0VFXJAlIaUUpRoFU01AWgWR0CUv3XPZ7HAdX2UKGgGaAloD0MI7L34or1WbECUhpRSlGgVTWEBaBZHQJTAnN5dGAl1fZQoaAZoCWgPQwjaVUj5CVlxQJSGlFKUaBVNOAFoFkdAlMDh9b5dnnV9lChoBmgJaA9DCF2nkZaKVHFAlIaUUpRoFU1EAWgWR0CUwZewLVnVdX2UKGgGaAloD0MICU/o9adecECUhpRSlGgVTVQBaBZHQJTDU3BHkLh1fZQoaAZoCWgPQwghzO1e7hpwQJSGlFKUaBVNLAFoFkdAlMN7P6be/HV9lChoBmgJaA9DCGzrp/8scWxAlIaUUpRoFU1GAWgWR0CUxeFFDv3KdX2UKGgGaAloD0MIjnQGRl6EcECUhpRSlGgVTVgBaBZHQJTIamixmkF1fZQoaAZoCWgPQwgrFOl+DldwQJSGlFKUaBVNVQFoFkdAlMlUvTPSlXV9lChoBmgJaA9DCK8JaY1BJW1AlIaUUpRoFU0+AWgWR0CUyWjDsMRZdX2UKGgGaAloD0MI5V/LK9ePb0CUhpRSlGgVTV8BaBZHQJTJwjKPn0V1fZQoaAZoCWgPQwjylNV0fZ5wQJSGlFKUaBVNEwFoFkdAlMr4bfgrH3V9lChoBmgJaA9DCPeuQV/6CG9AlIaUUpRoFU1HAWgWR0CUy756+nIidX2UKGgGaAloD0MIzuLFwpAic0CUhpRSlGgVTQkBaBZHQJTMglme18d1fZQoaAZoCWgPQwgLC+4H/JRxQJSGlFKUaBVNMgFoFkdAlMynC0ngHnV9lChoBmgJaA9DCPrwLEEG1XJAlIaUUpRoFU0jAWgWR0CU5xLSeAd5dX2UKGgGaAloD0MI3CvzVl3NbkCUhpRSlGgVTUUBaBZHQJTnUSmIj4Z1fZQoaAZoCWgPQwiLGHYYU0BwQJSGlFKUaBVNPgFoFkdAlOgtweeWfXV9lChoBmgJaA9DCB7ec2B5/3BAlIaUUpRoFU0iAWgWR0CU65fJ3gUDdX2UKGgGaAloD0MId/S/XAtVbECUhpRSlGgVTV0BaBZHQJTsIK1G9Yh1fZQoaAZoCWgPQwh8f4P2agxwQJSGlFKUaBVNSQFoFkdAlO2Qfp2U0XV9lChoBmgJaA9DCORmuAHfT3BAlIaUUpRoFU0VAWgWR0CU9DZgXuVpdX2UKGgGaAloD0MI6znpfaOdcECUhpRSlGgVTVIBaBZHQJT1/F0gbId1fZQoaAZoCWgPQwiDo+TVOf9sQJSGlFKUaBVNSgFoFkdAlPtqij+Jg3V9lChoBmgJaA9DCKQ5svILPXBAlIaUUpRoFU1XAWgWR0CU+3fSx7iRdX2UKGgGaAloD0MIJNHLKJbxbUCUhpRSlGgVTT0BaBZHQJT8afRNRFZ1fZQoaAZoCWgPQwjogvqWubhxQJSGlFKUaBVNIgFoFkdAlPyN/J/5L3V9lChoBmgJaA9DCKAzaVN14HFAlIaUUpRoFU1eAWgWR0CU/b+X7cfvdX2UKGgGaAloD0MI5IbfTfdYckCUhpRSlGgVTTsBaBZHQJT+KOAAhjh1fZQoaAZoCWgPQwgbLJykOW1yQJSGlFKUaBVNegFoFkdAlQDp/XoTwnV9lChoBmgJaA9DCCKmRBI9/m9AlIaUUpRoFU1FAWgWR0CVAtIU8FINdX2UKGgGaAloD0MItvKS/8l4bkCUhpRSlGgVTWwBaBZHQJUEBEy+HrR1fZQoaAZoCWgPQwi2R2+4Dy9xQJSGlFKUaBVNFQFoFkdAlQSbQokRjHV9lChoBmgJaA9DCEAWokNg52NAlIaUUpRoFU3oA2gWR0CVBtlpoK2KdX2UKGgGaAloD0MIn8coz7xbcECUhpRSlGgVTSIBaBZHQJUHjRNRFZx1fZQoaAZoCWgPQwgPD2H8tFpsQJSGlFKUaBVNgAFoFkdAlQeP99+gDnV9lChoBmgJaA9DCAwCK4cWx3FAlIaUUpRoFU2BAWgWR0CVCDj5bhWHdX2UKGgGaAloD0MI1/hM9k9XbkCUhpRSlGgVTUABaBZHQJUIvf1pTMt1fZQoaAZoCWgPQwiOdXEbTXJwQJSGlFKUaBVNFwFoFkdAlQmmdAgPmXV9lChoBmgJaA9DCOhKBKp/EnJAlIaUUpRoFU03AWgWR0CVCjbVz6rOdX2UKGgGaAloD0MImgXaHZIRcUCUhpRSlGgVTUsBaBZHQJULV9x6v7p1fZQoaAZoCWgPQwgV/3dEhTJyQJSGlFKUaBVNNQFoFkdAlQtncgyM1nV9lChoBmgJaA9DCN1e0hgtV3JAlIaUUpRoFU1EAWgWR0CVC64CZF5OdX2UKGgGaAloD0MI1As+zckNckCUhpRSlGgVTUABaBZHQJUNR7Qb+991fZQoaAZoCWgPQwglWvJ4mjhyQJSGlFKUaBVNIQFoFkdAlQ2j/dZaFHV9lChoBmgJaA9DCE6XxcSmUXBAlIaUUpRoFU0tAWgWR0CVD7vexfOVdX2UKGgGaAloD0MIJjRJLCnWcECUhpRSlGgVTV4BaBZHQJUQ/Spiqhl1fZQoaAZoCWgPQwhljuVd9YAGQJSGlFKUaBVNCAFoFkdAlRGCkfs/p3V9lChoBmgJaA9DCD9wlSfQw3BAlIaUUpRoFU0zAWgWR0CVErQjD8+BdX2UKGgGaAloD0MI5dL4hVcbbkCUhpRSlGgVTUABaBZHQJUTUJQcghd1fZQoaAZoCWgPQwj+SBEZ1gBxQJSGlFKUaBVNFQFoFkdAlRQoqwyIpHV9lChoBmgJaA9DCFrW/WOhWHBAlIaUUpRoFU1pAWgWR0CVFDo11nuidX2UKGgGaAloD0MI2lTdI5vbJcCUhpRSlGgVS/BoFkdAlRRRzvJA+3V9lChoBmgJaA9DCFn5ZTAGNHJAlIaUUpRoFU0DAWgWR0CVFLwfyPMjdX2UKGgGaAloD0MIlZuopXkFcECUhpRSlGgVTVMBaBZHQJUUxwZOzpp1fZQoaAZoCWgPQwh5WRML/BRuQJSGlFKUaBVNQQFoFkdAlRUan752yXV9lChoBmgJaA9DCFa3ek56jnBAlIaUUpRoFU1LAWgWR0CVFtMK1G9YdX2UKGgGaAloD0MIqtVXV8UkcUCUhpRSlGgVTWYBaBZHQJUacLpiZv11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo_LunarLander-v2_Priyansh.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a5ad36433c30532ef03dde2411ef6b1530f38ddbf70ab4a1f8e35a54efb0ef33
|
| 3 |
+
size 147429
|
ppo_LunarLander-v2_Priyansh/_stable_baselines3_version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
1.7.0
|
ppo_LunarLander-v2_Priyansh/data
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"policy_class": {
|
| 3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
| 4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
| 5 |
+
"__module__": "stable_baselines3.common.policies",
|
| 6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
| 7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f58e7573040>",
|
| 8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f58e75730d0>",
|
| 9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f58e7573160>",
|
| 10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f58e75731f0>",
|
| 11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f58e7573280>",
|
| 12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f58e7573310>",
|
| 13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f58e75733a0>",
|
| 14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f58e7573430>",
|
| 15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f58e75734c0>",
|
| 16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f58e7573550>",
|
| 17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f58e75735e0>",
|
| 18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f58e7573670>",
|
| 19 |
+
"__abstractmethods__": "frozenset()",
|
| 20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f58e7574240>"
|
| 21 |
+
},
|
| 22 |
+
"verbose": 1,
|
| 23 |
+
"policy_kwargs": {},
|
| 24 |
+
"observation_space": {
|
| 25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
| 26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
| 27 |
+
"dtype": "float32",
|
| 28 |
+
"_shape": [
|
| 29 |
+
8
|
| 30 |
+
],
|
| 31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
| 32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
| 33 |
+
"bounded_below": "[False False False False False False False False]",
|
| 34 |
+
"bounded_above": "[False False False False False False False False]",
|
| 35 |
+
"_np_random": null
|
| 36 |
+
},
|
| 37 |
+
"action_space": {
|
| 38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
| 39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
| 40 |
+
"n": 4,
|
| 41 |
+
"_shape": [],
|
| 42 |
+
"dtype": "int64",
|
| 43 |
+
"_np_random": null
|
| 44 |
+
},
|
| 45 |
+
"n_envs": 16,
|
| 46 |
+
"num_timesteps": 1015808,
|
| 47 |
+
"_total_timesteps": 1000000,
|
| 48 |
+
"_num_timesteps_at_start": 0,
|
| 49 |
+
"seed": null,
|
| 50 |
+
"action_noise": null,
|
| 51 |
+
"start_time": 1679654999257901589,
|
| 52 |
+
"learning_rate": 0.0003,
|
| 53 |
+
"tensorboard_log": null,
|
| 54 |
+
"lr_schedule": {
|
| 55 |
+
":type:": "<class 'function'>",
|
| 56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
| 57 |
+
},
|
| 58 |
+
"_last_obs": {
|
| 59 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJr03Ty4pqi53FKTuWYBobQMhKw7hgusOAAAgD8AAIA/ptaRPbwVtT7iyCu+hqI2vrixuL3soYQ9AAAAAAAAAAAAGYI8uuqdPt6MWz0HxVG+1a2mvQfgEj4AAAAAAAAAALPtVj21OpM+lp84vtTzGL5ysJK94do+vAAAAAAAAAAAjUm2vTyhoj7NfjQ+8iKZvk4uaD1uLFS9AAAAAAAAAADNRJG8OBnLu8ZrrjlAch88wngWPYv8C70AAIA/AACAP83g87zbFZe82miiPHfmtjx7cAM+WxyQvQAAgD8AAIA/jSL+PQPdXbyiSZu8AGfXPEAvyT3tnq+9AACAPwAAgD/m9zG9SEOJupLqTztWRI82HMBCucvwbroAAIA/AAAAAFo8jj354yc+w642vLy8Mb5kBxC9u512PQAAAAAAAAAAAJj2PLgmvLmKFgI4mjvgMmBB0zpVdxm3AACAPwAAgD+aGY66pUkCPioCZr078n++4sbwvLU+xTwAAAAAAAAAAKbej77owAo/Gx2JPVaCsr5ti8+9iSCvvAAAAAAAAAAARllNvlg8eD/L5Gm9hIOYvhc+ir32l+o9AAAAAAAAAAAAN/W8IvetP6Z9Pb/XjR2/Iqy7PDpobD0AAAAAAAAAAABSIL2uz6G6pbBIuqRibbbqHew6cJtlOQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
| 61 |
+
},
|
| 62 |
+
"_last_episode_starts": {
|
| 63 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
| 65 |
+
},
|
| 66 |
+
"_last_original_obs": null,
|
| 67 |
+
"_episode_num": 0,
|
| 68 |
+
"use_sde": false,
|
| 69 |
+
"sde_sample_freq": -1,
|
| 70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
| 71 |
+
"ep_info_buffer": {
|
| 72 |
+
":type:": "<class 'collections.deque'>",
|
| 73 |
+
":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9yAE5EuecUCUhpRSlIwBbJRNVAGMAXSUR0CUaj8F6iTMdX2UKGgGaAloD0MIwR9+/rv7cECUhpRSlGgVTXkBaBZHQJRq36TGHYZ1fZQoaAZoCWgPQwjvGvSlty1wQJSGlFKUaBVNSgFoFkdAlGstJjDsMXV9lChoBmgJaA9DCO3UXG4wxm1AlIaUUpRoFU1RAWgWR0CUa+QXAM2FdX2UKGgGaAloD0MIFqWEYNUOckCUhpRSlGgVTREBaBZHQJRsD9YOlO51fZQoaAZoCWgPQwj2s1iK5ClwQJSGlFKUaBVNIgFoFkdAlG29Oh0yQHV9lChoBmgJaA9DCKLrwg9OmW9AlIaUUpRoFU1kAWgWR0CUcLTH80k4dX2UKGgGaAloD0MI6DI1CV5/cECUhpRSlGgVTRYBaBZHQJRxlr1uivh1fZQoaAZoCWgPQwiis8wiFL1vQJSGlFKUaBVNiQFoFkdAlIzV7MPjGXV9lChoBmgJaA9DCHIz3IDPrnBAlIaUUpRoFU09AWgWR0CUjTKwY+B6dX2UKGgGaAloD0MIRKZ8COpjcECUhpRSlGgVTVIBaBZHQJSOaU5dWyV1fZQoaAZoCWgPQwiHUKVmT3ZyQJSGlFKUaBVNgQFoFkdAlJHh5C4SYnV9lChoBmgJaA9DCDhIiPKFtG9AlIaUUpRoFU0wAWgWR0CUlDBtDUmVdX2UKGgGaAloD0MIDMhe7374ckCUhpRSlGgVTR0BaBZHQJSUNxPwd811fZQoaAZoCWgPQwigi4aMR7FVQJSGlFKUaBVN6ANoFkdAlJR/AoG6gHV9lChoBmgJaA9DCE6c3O9QmG9AlIaUUpRoFU1eAWgWR0CUlKYUFjd6dX2UKGgGaAloD0MIlgUTf1TJcECUhpRSlGgVTRQBaBZHQJSWUtNBWxR1fZQoaAZoCWgPQwiCAYQP5eZxQJSGlFKUaBVNYwFoFkdAlJc0aqCHynV9lChoBmgJaA9DCFZFuMno+3FAlIaUUpRoFU1RAWgWR0CUl5IZIg/1dX2UKGgGaAloD0MILNSa5p04cUCUhpRSlGgVTVsBaBZHQJSX4IiTt9h1fZQoaAZoCWgPQwgNAFXc+J5xQJSGlFKUaBVNRQFoFkdAlJ4ne7+T/3V9lChoBmgJaA9DCOer5GP3lG9AlIaUUpRoFU0fAWgWR0CUnykpI+W4dX2UKGgGaAloD0MInRA66JIqcECUhpRSlGgVTUcBaBZHQJSfiEeyRjl1fZQoaAZoCWgPQwhD5zV2CStuQJSGlFKUaBVNWgFoFkdAlKOTTa0x/XV9lChoBmgJaA9DCML6P4f5SWJAlIaUUpRoFU3oA2gWR0CUpg9/jKgadX2UKGgGaAloD0MIDi4dc56zb0CUhpRSlGgVTTMBaBZHQJSnB8w5/9Z1fZQoaAZoCWgPQwj7WwLwj0RyQJSGlFKUaBVNfAFoFkdAlKd9dZ7ojnV9lChoBmgJaA9DCEFl/PsMb2xAlIaUUpRoFU0mAWgWR0CUp/fe1rqMdX2UKGgGaAloD0MIUKkSZa9FcUCUhpRSlGgVTT8BaBZHQJSo9qBVdX11fZQoaAZoCWgPQwhjDRe5pz1vQJSGlFKUaBVNPAFoFkdAlKljNQj2SXV9lChoBmgJaA9DCAd+VMN+mW9AlIaUUpRoFU1dAWgWR0CUq3/4ZdfLdX2UKGgGaAloD0MIblD7rZ3db0CUhpRSlGgVTTwBaBZHQJSrm6asp5N1fZQoaAZoCWgPQwhU5uYb0WRxQJSGlFKUaBVNRwFoFkdAlLFJzo2XLXV9lChoBmgJaA9DCB5Pyw9cL29AlIaUUpRoFU1kAWgWR0CUsnvSMLncdX2UKGgGaAloD0MIcHuCxPb1cECUhpRSlGgVTSMBaBZHQJSzrTEzfrN1fZQoaAZoCWgPQwjtDFNbagVzQJSGlFKUaBVNPQFoFkdAlLSSAtnPFHV9lChoBmgJaA9DCAr19BF4Dm1AlIaUUpRoFU15AWgWR0CUtKOLiuMddX2UKGgGaAloD0MIR+UmainxcECUhpRSlGgVTUUBaBZHQJS19pItlI51fZQoaAZoCWgPQwjvIHamUFdwQJSGlFKUaBVNVgNoFkdAlLdgI6bONnV9lChoBmgJaA9DCO60NSKYgGxAlIaUUpRoFU0nAWgWR0CUuoUI9kjHdX2UKGgGaAloD0MIX36nyQywbkCUhpRSlGgVTUsBaBZHQJS64D8tPHl1fZQoaAZoCWgPQwhz8iITcFpxQJSGlFKUaBVNLgFoFkdAlL3+mixmkHV9lChoBmgJaA9DCFpG6j0VFXJAlIaUUpRoFU01AWgWR0CUv3XPZ7HAdX2UKGgGaAloD0MI7L34or1WbECUhpRSlGgVTWEBaBZHQJTAnN5dGAl1fZQoaAZoCWgPQwjaVUj5CVlxQJSGlFKUaBVNOAFoFkdAlMDh9b5dnnV9lChoBmgJaA9DCF2nkZaKVHFAlIaUUpRoFU1EAWgWR0CUwZewLVnVdX2UKGgGaAloD0MICU/o9adecECUhpRSlGgVTVQBaBZHQJTDU3BHkLh1fZQoaAZoCWgPQwghzO1e7hpwQJSGlFKUaBVNLAFoFkdAlMN7P6be/HV9lChoBmgJaA9DCGzrp/8scWxAlIaUUpRoFU1GAWgWR0CUxeFFDv3KdX2UKGgGaAloD0MIjnQGRl6EcECUhpRSlGgVTVgBaBZHQJTIamixmkF1fZQoaAZoCWgPQwgrFOl+DldwQJSGlFKUaBVNVQFoFkdAlMlUvTPSlXV9lChoBmgJaA9DCK8JaY1BJW1AlIaUUpRoFU0+AWgWR0CUyWjDsMRZdX2UKGgGaAloD0MI5V/LK9ePb0CUhpRSlGgVTV8BaBZHQJTJwjKPn0V1fZQoaAZoCWgPQwjylNV0fZ5wQJSGlFKUaBVNEwFoFkdAlMr4bfgrH3V9lChoBmgJaA9DCPeuQV/6CG9AlIaUUpRoFU1HAWgWR0CUy756+nIidX2UKGgGaAloD0MIzuLFwpAic0CUhpRSlGgVTQkBaBZHQJTMglme18d1fZQoaAZoCWgPQwgLC+4H/JRxQJSGlFKUaBVNMgFoFkdAlMynC0ngHnV9lChoBmgJaA9DCPrwLEEG1XJAlIaUUpRoFU0jAWgWR0CU5xLSeAd5dX2UKGgGaAloD0MI3CvzVl3NbkCUhpRSlGgVTUUBaBZHQJTnUSmIj4Z1fZQoaAZoCWgPQwiLGHYYU0BwQJSGlFKUaBVNPgFoFkdAlOgtweeWfXV9lChoBmgJaA9DCB7ec2B5/3BAlIaUUpRoFU0iAWgWR0CU65fJ3gUDdX2UKGgGaAloD0MId/S/XAtVbECUhpRSlGgVTV0BaBZHQJTsIK1G9Yh1fZQoaAZoCWgPQwh8f4P2agxwQJSGlFKUaBVNSQFoFkdAlO2Qfp2U0XV9lChoBmgJaA9DCORmuAHfT3BAlIaUUpRoFU0VAWgWR0CU9DZgXuVpdX2UKGgGaAloD0MI6znpfaOdcECUhpRSlGgVTVIBaBZHQJT1/F0gbId1fZQoaAZoCWgPQwiDo+TVOf9sQJSGlFKUaBVNSgFoFkdAlPtqij+Jg3V9lChoBmgJaA9DCKQ5svILPXBAlIaUUpRoFU1XAWgWR0CU+3fSx7iRdX2UKGgGaAloD0MIJNHLKJbxbUCUhpRSlGgVTT0BaBZHQJT8afRNRFZ1fZQoaAZoCWgPQwjogvqWubhxQJSGlFKUaBVNIgFoFkdAlPyN/J/5L3V9lChoBmgJaA9DCKAzaVN14HFAlIaUUpRoFU1eAWgWR0CU/b+X7cfvdX2UKGgGaAloD0MI5IbfTfdYckCUhpRSlGgVTTsBaBZHQJT+KOAAhjh1fZQoaAZoCWgPQwgbLJykOW1yQJSGlFKUaBVNegFoFkdAlQDp/XoTwnV9lChoBmgJaA9DCCKmRBI9/m9AlIaUUpRoFU1FAWgWR0CVAtIU8FINdX2UKGgGaAloD0MItvKS/8l4bkCUhpRSlGgVTWwBaBZHQJUEBEy+HrR1fZQoaAZoCWgPQwi2R2+4Dy9xQJSGlFKUaBVNFQFoFkdAlQSbQokRjHV9lChoBmgJaA9DCEAWokNg52NAlIaUUpRoFU3oA2gWR0CVBtlpoK2KdX2UKGgGaAloD0MIn8coz7xbcECUhpRSlGgVTSIBaBZHQJUHjRNRFZx1fZQoaAZoCWgPQwgPD2H8tFpsQJSGlFKUaBVNgAFoFkdAlQeP99+gDnV9lChoBmgJaA9DCAwCK4cWx3FAlIaUUpRoFU2BAWgWR0CVCDj5bhWHdX2UKGgGaAloD0MI1/hM9k9XbkCUhpRSlGgVTUABaBZHQJUIvf1pTMt1fZQoaAZoCWgPQwiOdXEbTXJwQJSGlFKUaBVNFwFoFkdAlQmmdAgPmXV9lChoBmgJaA9DCOhKBKp/EnJAlIaUUpRoFU03AWgWR0CVCjbVz6rOdX2UKGgGaAloD0MImgXaHZIRcUCUhpRSlGgVTUsBaBZHQJULV9x6v7p1fZQoaAZoCWgPQwgV/3dEhTJyQJSGlFKUaBVNNQFoFkdAlQtncgyM1nV9lChoBmgJaA9DCN1e0hgtV3JAlIaUUpRoFU1EAWgWR0CVC64CZF5OdX2UKGgGaAloD0MI1As+zckNckCUhpRSlGgVTUABaBZHQJUNR7Qb+991fZQoaAZoCWgPQwglWvJ4mjhyQJSGlFKUaBVNIQFoFkdAlQ2j/dZaFHV9lChoBmgJaA9DCE6XxcSmUXBAlIaUUpRoFU0tAWgWR0CVD7vexfOVdX2UKGgGaAloD0MIJjRJLCnWcECUhpRSlGgVTV4BaBZHQJUQ/Spiqhl1fZQoaAZoCWgPQwhljuVd9YAGQJSGlFKUaBVNCAFoFkdAlRGCkfs/p3V9lChoBmgJaA9DCD9wlSfQw3BAlIaUUpRoFU0zAWgWR0CVErQjD8+BdX2UKGgGaAloD0MI5dL4hVcbbkCUhpRSlGgVTUABaBZHQJUTUJQcghd1fZQoaAZoCWgPQwj+SBEZ1gBxQJSGlFKUaBVNFQFoFkdAlRQoqwyIpHV9lChoBmgJaA9DCFrW/WOhWHBAlIaUUpRoFU1pAWgWR0CVFDo11nuidX2UKGgGaAloD0MI2lTdI5vbJcCUhpRSlGgVS/BoFkdAlRRRzvJA+3V9lChoBmgJaA9DCFn5ZTAGNHJAlIaUUpRoFU0DAWgWR0CVFLwfyPMjdX2UKGgGaAloD0MIlZuopXkFcECUhpRSlGgVTVMBaBZHQJUUxwZOzpp1fZQoaAZoCWgPQwh5WRML/BRuQJSGlFKUaBVNQQFoFkdAlRUan752yXV9lChoBmgJaA9DCFa3ek56jnBAlIaUUpRoFU1LAWgWR0CVFtMK1G9YdX2UKGgGaAloD0MIqtVXV8UkcUCUhpRSlGgVTWYBaBZHQJUacLpiZv11ZS4="
|
| 74 |
+
},
|
| 75 |
+
"ep_success_buffer": {
|
| 76 |
+
":type:": "<class 'collections.deque'>",
|
| 77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
| 78 |
+
},
|
| 79 |
+
"_n_updates": 248,
|
| 80 |
+
"n_steps": 1024,
|
| 81 |
+
"gamma": 0.999,
|
| 82 |
+
"gae_lambda": 0.98,
|
| 83 |
+
"ent_coef": 0.01,
|
| 84 |
+
"vf_coef": 0.5,
|
| 85 |
+
"max_grad_norm": 0.5,
|
| 86 |
+
"batch_size": 64,
|
| 87 |
+
"n_epochs": 4,
|
| 88 |
+
"clip_range": {
|
| 89 |
+
":type:": "<class 'function'>",
|
| 90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
| 91 |
+
},
|
| 92 |
+
"clip_range_vf": null,
|
| 93 |
+
"normalize_advantage": true,
|
| 94 |
+
"target_kl": null
|
| 95 |
+
}
|
ppo_LunarLander-v2_Priyansh/policy.optimizer.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:62795890636f321bb4495c8fc4343572de9e13c4a926f2281dabf855cc10c2bc
|
| 3 |
+
size 87929
|
ppo_LunarLander-v2_Priyansh/policy.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:01abeaf449b0698cac58461181cfb4eca42637c3be20ca2c9338190b06c7ec65
|
| 3 |
+
size 43393
|
ppo_LunarLander-v2_Priyansh/pytorch_variables.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
| 3 |
+
size 431
|
ppo_LunarLander-v2_Priyansh/system_info.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
| 2 |
+
- Python: 3.9.16
|
| 3 |
+
- Stable-Baselines3: 1.7.0
|
| 4 |
+
- PyTorch: 1.13.1+cu116
|
| 5 |
+
- GPU Enabled: True
|
| 6 |
+
- Numpy: 1.22.4
|
| 7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
|
Binary file (196 kB). View file
|
|
|
results.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"mean_reward": 257.36477001440096, "std_reward": 21.16331223398615, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-24T11:18:08.297875"}
|