PriyanshS commited on
Commit
e9ce3be
·
1 Parent(s): a4f0e8d

First version of the First Assignment of the DRL course

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 257.36 +/- 21.16
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f58e7573040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f58e75730d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f58e7573160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f58e75731f0>", "_build": "<function ActorCriticPolicy._build at 0x7f58e7573280>", "forward": "<function ActorCriticPolicy.forward at 0x7f58e7573310>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f58e75733a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f58e7573430>", "_predict": "<function ActorCriticPolicy._predict at 0x7f58e75734c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f58e7573550>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f58e75735e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f58e7573670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f58e7574240>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679654999257901589, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJr03Ty4pqi53FKTuWYBobQMhKw7hgusOAAAgD8AAIA/ptaRPbwVtT7iyCu+hqI2vrixuL3soYQ9AAAAAAAAAAAAGYI8uuqdPt6MWz0HxVG+1a2mvQfgEj4AAAAAAAAAALPtVj21OpM+lp84vtTzGL5ysJK94do+vAAAAAAAAAAAjUm2vTyhoj7NfjQ+8iKZvk4uaD1uLFS9AAAAAAAAAADNRJG8OBnLu8ZrrjlAch88wngWPYv8C70AAIA/AACAP83g87zbFZe82miiPHfmtjx7cAM+WxyQvQAAgD8AAIA/jSL+PQPdXbyiSZu8AGfXPEAvyT3tnq+9AACAPwAAgD/m9zG9SEOJupLqTztWRI82HMBCucvwbroAAIA/AAAAAFo8jj354yc+w642vLy8Mb5kBxC9u512PQAAAAAAAAAAAJj2PLgmvLmKFgI4mjvgMmBB0zpVdxm3AACAPwAAgD+aGY66pUkCPioCZr078n++4sbwvLU+xTwAAAAAAAAAAKbej77owAo/Gx2JPVaCsr5ti8+9iSCvvAAAAAAAAAAARllNvlg8eD/L5Gm9hIOYvhc+ir32l+o9AAAAAAAAAAAAN/W8IvetP6Z9Pb/XjR2/Iqy7PDpobD0AAAAAAAAAAABSIL2uz6G6pbBIuqRibbbqHew6cJtlOQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9yAE5EuecUCUhpRSlIwBbJRNVAGMAXSUR0CUaj8F6iTMdX2UKGgGaAloD0MIwR9+/rv7cECUhpRSlGgVTXkBaBZHQJRq36TGHYZ1fZQoaAZoCWgPQwjvGvSlty1wQJSGlFKUaBVNSgFoFkdAlGstJjDsMXV9lChoBmgJaA9DCO3UXG4wxm1AlIaUUpRoFU1RAWgWR0CUa+QXAM2FdX2UKGgGaAloD0MIFqWEYNUOckCUhpRSlGgVTREBaBZHQJRsD9YOlO51fZQoaAZoCWgPQwj2s1iK5ClwQJSGlFKUaBVNIgFoFkdAlG29Oh0yQHV9lChoBmgJaA9DCKLrwg9OmW9AlIaUUpRoFU1kAWgWR0CUcLTH80k4dX2UKGgGaAloD0MI6DI1CV5/cECUhpRSlGgVTRYBaBZHQJRxlr1uivh1fZQoaAZoCWgPQwiis8wiFL1vQJSGlFKUaBVNiQFoFkdAlIzV7MPjGXV9lChoBmgJaA9DCHIz3IDPrnBAlIaUUpRoFU09AWgWR0CUjTKwY+B6dX2UKGgGaAloD0MIRKZ8COpjcECUhpRSlGgVTVIBaBZHQJSOaU5dWyV1fZQoaAZoCWgPQwiHUKVmT3ZyQJSGlFKUaBVNgQFoFkdAlJHh5C4SYnV9lChoBmgJaA9DCDhIiPKFtG9AlIaUUpRoFU0wAWgWR0CUlDBtDUmVdX2UKGgGaAloD0MIDMhe7374ckCUhpRSlGgVTR0BaBZHQJSUNxPwd811fZQoaAZoCWgPQwigi4aMR7FVQJSGlFKUaBVN6ANoFkdAlJR/AoG6gHV9lChoBmgJaA9DCE6c3O9QmG9AlIaUUpRoFU1eAWgWR0CUlKYUFjd6dX2UKGgGaAloD0MIlgUTf1TJcECUhpRSlGgVTRQBaBZHQJSWUtNBWxR1fZQoaAZoCWgPQwiCAYQP5eZxQJSGlFKUaBVNYwFoFkdAlJc0aqCHynV9lChoBmgJaA9DCFZFuMno+3FAlIaUUpRoFU1RAWgWR0CUl5IZIg/1dX2UKGgGaAloD0MILNSa5p04cUCUhpRSlGgVTVsBaBZHQJSX4IiTt9h1fZQoaAZoCWgPQwgNAFXc+J5xQJSGlFKUaBVNRQFoFkdAlJ4ne7+T/3V9lChoBmgJaA9DCOer5GP3lG9AlIaUUpRoFU0fAWgWR0CUnykpI+W4dX2UKGgGaAloD0MInRA66JIqcECUhpRSlGgVTUcBaBZHQJSfiEeyRjl1fZQoaAZoCWgPQwhD5zV2CStuQJSGlFKUaBVNWgFoFkdAlKOTTa0x/XV9lChoBmgJaA9DCML6P4f5SWJAlIaUUpRoFU3oA2gWR0CUpg9/jKgadX2UKGgGaAloD0MIDi4dc56zb0CUhpRSlGgVTTMBaBZHQJSnB8w5/9Z1fZQoaAZoCWgPQwj7WwLwj0RyQJSGlFKUaBVNfAFoFkdAlKd9dZ7ojnV9lChoBmgJaA9DCEFl/PsMb2xAlIaUUpRoFU0mAWgWR0CUp/fe1rqMdX2UKGgGaAloD0MIUKkSZa9FcUCUhpRSlGgVTT8BaBZHQJSo9qBVdX11fZQoaAZoCWgPQwhjDRe5pz1vQJSGlFKUaBVNPAFoFkdAlKljNQj2SXV9lChoBmgJaA9DCAd+VMN+mW9AlIaUUpRoFU1dAWgWR0CUq3/4ZdfLdX2UKGgGaAloD0MIblD7rZ3db0CUhpRSlGgVTTwBaBZHQJSrm6asp5N1fZQoaAZoCWgPQwhU5uYb0WRxQJSGlFKUaBVNRwFoFkdAlLFJzo2XLXV9lChoBmgJaA9DCB5Pyw9cL29AlIaUUpRoFU1kAWgWR0CUsnvSMLncdX2UKGgGaAloD0MIcHuCxPb1cECUhpRSlGgVTSMBaBZHQJSzrTEzfrN1fZQoaAZoCWgPQwjtDFNbagVzQJSGlFKUaBVNPQFoFkdAlLSSAtnPFHV9lChoBmgJaA9DCAr19BF4Dm1AlIaUUpRoFU15AWgWR0CUtKOLiuMddX2UKGgGaAloD0MIR+UmainxcECUhpRSlGgVTUUBaBZHQJS19pItlI51fZQoaAZoCWgPQwjvIHamUFdwQJSGlFKUaBVNVgNoFkdAlLdgI6bONnV9lChoBmgJaA9DCO60NSKYgGxAlIaUUpRoFU0nAWgWR0CUuoUI9kjHdX2UKGgGaAloD0MIX36nyQywbkCUhpRSlGgVTUsBaBZHQJS64D8tPHl1fZQoaAZoCWgPQwhz8iITcFpxQJSGlFKUaBVNLgFoFkdAlL3+mixmkHV9lChoBmgJaA9DCFpG6j0VFXJAlIaUUpRoFU01AWgWR0CUv3XPZ7HAdX2UKGgGaAloD0MI7L34or1WbECUhpRSlGgVTWEBaBZHQJTAnN5dGAl1fZQoaAZoCWgPQwjaVUj5CVlxQJSGlFKUaBVNOAFoFkdAlMDh9b5dnnV9lChoBmgJaA9DCF2nkZaKVHFAlIaUUpRoFU1EAWgWR0CUwZewLVnVdX2UKGgGaAloD0MICU/o9adecECUhpRSlGgVTVQBaBZHQJTDU3BHkLh1fZQoaAZoCWgPQwghzO1e7hpwQJSGlFKUaBVNLAFoFkdAlMN7P6be/HV9lChoBmgJaA9DCGzrp/8scWxAlIaUUpRoFU1GAWgWR0CUxeFFDv3KdX2UKGgGaAloD0MIjnQGRl6EcECUhpRSlGgVTVgBaBZHQJTIamixmkF1fZQoaAZoCWgPQwgrFOl+DldwQJSGlFKUaBVNVQFoFkdAlMlUvTPSlXV9lChoBmgJaA9DCK8JaY1BJW1AlIaUUpRoFU0+AWgWR0CUyWjDsMRZdX2UKGgGaAloD0MI5V/LK9ePb0CUhpRSlGgVTV8BaBZHQJTJwjKPn0V1fZQoaAZoCWgPQwjylNV0fZ5wQJSGlFKUaBVNEwFoFkdAlMr4bfgrH3V9lChoBmgJaA9DCPeuQV/6CG9AlIaUUpRoFU1HAWgWR0CUy756+nIidX2UKGgGaAloD0MIzuLFwpAic0CUhpRSlGgVTQkBaBZHQJTMglme18d1fZQoaAZoCWgPQwgLC+4H/JRxQJSGlFKUaBVNMgFoFkdAlMynC0ngHnV9lChoBmgJaA9DCPrwLEEG1XJAlIaUUpRoFU0jAWgWR0CU5xLSeAd5dX2UKGgGaAloD0MI3CvzVl3NbkCUhpRSlGgVTUUBaBZHQJTnUSmIj4Z1fZQoaAZoCWgPQwiLGHYYU0BwQJSGlFKUaBVNPgFoFkdAlOgtweeWfXV9lChoBmgJaA9DCB7ec2B5/3BAlIaUUpRoFU0iAWgWR0CU65fJ3gUDdX2UKGgGaAloD0MId/S/XAtVbECUhpRSlGgVTV0BaBZHQJTsIK1G9Yh1fZQoaAZoCWgPQwh8f4P2agxwQJSGlFKUaBVNSQFoFkdAlO2Qfp2U0XV9lChoBmgJaA9DCORmuAHfT3BAlIaUUpRoFU0VAWgWR0CU9DZgXuVpdX2UKGgGaAloD0MI6znpfaOdcECUhpRSlGgVTVIBaBZHQJT1/F0gbId1fZQoaAZoCWgPQwiDo+TVOf9sQJSGlFKUaBVNSgFoFkdAlPtqij+Jg3V9lChoBmgJaA9DCKQ5svILPXBAlIaUUpRoFU1XAWgWR0CU+3fSx7iRdX2UKGgGaAloD0MIJNHLKJbxbUCUhpRSlGgVTT0BaBZHQJT8afRNRFZ1fZQoaAZoCWgPQwjogvqWubhxQJSGlFKUaBVNIgFoFkdAlPyN/J/5L3V9lChoBmgJaA9DCKAzaVN14HFAlIaUUpRoFU1eAWgWR0CU/b+X7cfvdX2UKGgGaAloD0MI5IbfTfdYckCUhpRSlGgVTTsBaBZHQJT+KOAAhjh1fZQoaAZoCWgPQwgbLJykOW1yQJSGlFKUaBVNegFoFkdAlQDp/XoTwnV9lChoBmgJaA9DCCKmRBI9/m9AlIaUUpRoFU1FAWgWR0CVAtIU8FINdX2UKGgGaAloD0MItvKS/8l4bkCUhpRSlGgVTWwBaBZHQJUEBEy+HrR1fZQoaAZoCWgPQwi2R2+4Dy9xQJSGlFKUaBVNFQFoFkdAlQSbQokRjHV9lChoBmgJaA9DCEAWokNg52NAlIaUUpRoFU3oA2gWR0CVBtlpoK2KdX2UKGgGaAloD0MIn8coz7xbcECUhpRSlGgVTSIBaBZHQJUHjRNRFZx1fZQoaAZoCWgPQwgPD2H8tFpsQJSGlFKUaBVNgAFoFkdAlQeP99+gDnV9lChoBmgJaA9DCAwCK4cWx3FAlIaUUpRoFU2BAWgWR0CVCDj5bhWHdX2UKGgGaAloD0MI1/hM9k9XbkCUhpRSlGgVTUABaBZHQJUIvf1pTMt1fZQoaAZoCWgPQwiOdXEbTXJwQJSGlFKUaBVNFwFoFkdAlQmmdAgPmXV9lChoBmgJaA9DCOhKBKp/EnJAlIaUUpRoFU03AWgWR0CVCjbVz6rOdX2UKGgGaAloD0MImgXaHZIRcUCUhpRSlGgVTUsBaBZHQJULV9x6v7p1fZQoaAZoCWgPQwgV/3dEhTJyQJSGlFKUaBVNNQFoFkdAlQtncgyM1nV9lChoBmgJaA9DCN1e0hgtV3JAlIaUUpRoFU1EAWgWR0CVC64CZF5OdX2UKGgGaAloD0MI1As+zckNckCUhpRSlGgVTUABaBZHQJUNR7Qb+991fZQoaAZoCWgPQwglWvJ4mjhyQJSGlFKUaBVNIQFoFkdAlQ2j/dZaFHV9lChoBmgJaA9DCE6XxcSmUXBAlIaUUpRoFU0tAWgWR0CVD7vexfOVdX2UKGgGaAloD0MIJjRJLCnWcECUhpRSlGgVTV4BaBZHQJUQ/Spiqhl1fZQoaAZoCWgPQwhljuVd9YAGQJSGlFKUaBVNCAFoFkdAlRGCkfs/p3V9lChoBmgJaA9DCD9wlSfQw3BAlIaUUpRoFU0zAWgWR0CVErQjD8+BdX2UKGgGaAloD0MI5dL4hVcbbkCUhpRSlGgVTUABaBZHQJUTUJQcghd1fZQoaAZoCWgPQwj+SBEZ1gBxQJSGlFKUaBVNFQFoFkdAlRQoqwyIpHV9lChoBmgJaA9DCFrW/WOhWHBAlIaUUpRoFU1pAWgWR0CVFDo11nuidX2UKGgGaAloD0MI2lTdI5vbJcCUhpRSlGgVS/BoFkdAlRRRzvJA+3V9lChoBmgJaA9DCFn5ZTAGNHJAlIaUUpRoFU0DAWgWR0CVFLwfyPMjdX2UKGgGaAloD0MIlZuopXkFcECUhpRSlGgVTVMBaBZHQJUUxwZOzpp1fZQoaAZoCWgPQwh5WRML/BRuQJSGlFKUaBVNQQFoFkdAlRUan752yXV9lChoBmgJaA9DCFa3ek56jnBAlIaUUpRoFU1LAWgWR0CVFtMK1G9YdX2UKGgGaAloD0MIqtVXV8UkcUCUhpRSlGgVTWYBaBZHQJUacLpiZv11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo_LunarLander-v2_Priyansh.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5ad36433c30532ef03dde2411ef6b1530f38ddbf70ab4a1f8e35a54efb0ef33
3
+ size 147429
ppo_LunarLander-v2_Priyansh/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo_LunarLander-v2_Priyansh/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f58e7573040>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f58e75730d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f58e7573160>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f58e75731f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f58e7573280>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f58e7573310>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f58e75733a0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f58e7573430>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f58e75734c0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f58e7573550>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f58e75735e0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f58e7573670>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f58e7574240>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1679654999257901589,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJr03Ty4pqi53FKTuWYBobQMhKw7hgusOAAAgD8AAIA/ptaRPbwVtT7iyCu+hqI2vrixuL3soYQ9AAAAAAAAAAAAGYI8uuqdPt6MWz0HxVG+1a2mvQfgEj4AAAAAAAAAALPtVj21OpM+lp84vtTzGL5ysJK94do+vAAAAAAAAAAAjUm2vTyhoj7NfjQ+8iKZvk4uaD1uLFS9AAAAAAAAAADNRJG8OBnLu8ZrrjlAch88wngWPYv8C70AAIA/AACAP83g87zbFZe82miiPHfmtjx7cAM+WxyQvQAAgD8AAIA/jSL+PQPdXbyiSZu8AGfXPEAvyT3tnq+9AACAPwAAgD/m9zG9SEOJupLqTztWRI82HMBCucvwbroAAIA/AAAAAFo8jj354yc+w642vLy8Mb5kBxC9u512PQAAAAAAAAAAAJj2PLgmvLmKFgI4mjvgMmBB0zpVdxm3AACAPwAAgD+aGY66pUkCPioCZr078n++4sbwvLU+xTwAAAAAAAAAAKbej77owAo/Gx2JPVaCsr5ti8+9iSCvvAAAAAAAAAAARllNvlg8eD/L5Gm9hIOYvhc+ir32l+o9AAAAAAAAAAAAN/W8IvetP6Z9Pb/XjR2/Iqy7PDpobD0AAAAAAAAAAABSIL2uz6G6pbBIuqRibbbqHew6cJtlOQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9yAE5EuecUCUhpRSlIwBbJRNVAGMAXSUR0CUaj8F6iTMdX2UKGgGaAloD0MIwR9+/rv7cECUhpRSlGgVTXkBaBZHQJRq36TGHYZ1fZQoaAZoCWgPQwjvGvSlty1wQJSGlFKUaBVNSgFoFkdAlGstJjDsMXV9lChoBmgJaA9DCO3UXG4wxm1AlIaUUpRoFU1RAWgWR0CUa+QXAM2FdX2UKGgGaAloD0MIFqWEYNUOckCUhpRSlGgVTREBaBZHQJRsD9YOlO51fZQoaAZoCWgPQwj2s1iK5ClwQJSGlFKUaBVNIgFoFkdAlG29Oh0yQHV9lChoBmgJaA9DCKLrwg9OmW9AlIaUUpRoFU1kAWgWR0CUcLTH80k4dX2UKGgGaAloD0MI6DI1CV5/cECUhpRSlGgVTRYBaBZHQJRxlr1uivh1fZQoaAZoCWgPQwiis8wiFL1vQJSGlFKUaBVNiQFoFkdAlIzV7MPjGXV9lChoBmgJaA9DCHIz3IDPrnBAlIaUUpRoFU09AWgWR0CUjTKwY+B6dX2UKGgGaAloD0MIRKZ8COpjcECUhpRSlGgVTVIBaBZHQJSOaU5dWyV1fZQoaAZoCWgPQwiHUKVmT3ZyQJSGlFKUaBVNgQFoFkdAlJHh5C4SYnV9lChoBmgJaA9DCDhIiPKFtG9AlIaUUpRoFU0wAWgWR0CUlDBtDUmVdX2UKGgGaAloD0MIDMhe7374ckCUhpRSlGgVTR0BaBZHQJSUNxPwd811fZQoaAZoCWgPQwigi4aMR7FVQJSGlFKUaBVN6ANoFkdAlJR/AoG6gHV9lChoBmgJaA9DCE6c3O9QmG9AlIaUUpRoFU1eAWgWR0CUlKYUFjd6dX2UKGgGaAloD0MIlgUTf1TJcECUhpRSlGgVTRQBaBZHQJSWUtNBWxR1fZQoaAZoCWgPQwiCAYQP5eZxQJSGlFKUaBVNYwFoFkdAlJc0aqCHynV9lChoBmgJaA9DCFZFuMno+3FAlIaUUpRoFU1RAWgWR0CUl5IZIg/1dX2UKGgGaAloD0MILNSa5p04cUCUhpRSlGgVTVsBaBZHQJSX4IiTt9h1fZQoaAZoCWgPQwgNAFXc+J5xQJSGlFKUaBVNRQFoFkdAlJ4ne7+T/3V9lChoBmgJaA9DCOer5GP3lG9AlIaUUpRoFU0fAWgWR0CUnykpI+W4dX2UKGgGaAloD0MInRA66JIqcECUhpRSlGgVTUcBaBZHQJSfiEeyRjl1fZQoaAZoCWgPQwhD5zV2CStuQJSGlFKUaBVNWgFoFkdAlKOTTa0x/XV9lChoBmgJaA9DCML6P4f5SWJAlIaUUpRoFU3oA2gWR0CUpg9/jKgadX2UKGgGaAloD0MIDi4dc56zb0CUhpRSlGgVTTMBaBZHQJSnB8w5/9Z1fZQoaAZoCWgPQwj7WwLwj0RyQJSGlFKUaBVNfAFoFkdAlKd9dZ7ojnV9lChoBmgJaA9DCEFl/PsMb2xAlIaUUpRoFU0mAWgWR0CUp/fe1rqMdX2UKGgGaAloD0MIUKkSZa9FcUCUhpRSlGgVTT8BaBZHQJSo9qBVdX11fZQoaAZoCWgPQwhjDRe5pz1vQJSGlFKUaBVNPAFoFkdAlKljNQj2SXV9lChoBmgJaA9DCAd+VMN+mW9AlIaUUpRoFU1dAWgWR0CUq3/4ZdfLdX2UKGgGaAloD0MIblD7rZ3db0CUhpRSlGgVTTwBaBZHQJSrm6asp5N1fZQoaAZoCWgPQwhU5uYb0WRxQJSGlFKUaBVNRwFoFkdAlLFJzo2XLXV9lChoBmgJaA9DCB5Pyw9cL29AlIaUUpRoFU1kAWgWR0CUsnvSMLncdX2UKGgGaAloD0MIcHuCxPb1cECUhpRSlGgVTSMBaBZHQJSzrTEzfrN1fZQoaAZoCWgPQwjtDFNbagVzQJSGlFKUaBVNPQFoFkdAlLSSAtnPFHV9lChoBmgJaA9DCAr19BF4Dm1AlIaUUpRoFU15AWgWR0CUtKOLiuMddX2UKGgGaAloD0MIR+UmainxcECUhpRSlGgVTUUBaBZHQJS19pItlI51fZQoaAZoCWgPQwjvIHamUFdwQJSGlFKUaBVNVgNoFkdAlLdgI6bONnV9lChoBmgJaA9DCO60NSKYgGxAlIaUUpRoFU0nAWgWR0CUuoUI9kjHdX2UKGgGaAloD0MIX36nyQywbkCUhpRSlGgVTUsBaBZHQJS64D8tPHl1fZQoaAZoCWgPQwhz8iITcFpxQJSGlFKUaBVNLgFoFkdAlL3+mixmkHV9lChoBmgJaA9DCFpG6j0VFXJAlIaUUpRoFU01AWgWR0CUv3XPZ7HAdX2UKGgGaAloD0MI7L34or1WbECUhpRSlGgVTWEBaBZHQJTAnN5dGAl1fZQoaAZoCWgPQwjaVUj5CVlxQJSGlFKUaBVNOAFoFkdAlMDh9b5dnnV9lChoBmgJaA9DCF2nkZaKVHFAlIaUUpRoFU1EAWgWR0CUwZewLVnVdX2UKGgGaAloD0MICU/o9adecECUhpRSlGgVTVQBaBZHQJTDU3BHkLh1fZQoaAZoCWgPQwghzO1e7hpwQJSGlFKUaBVNLAFoFkdAlMN7P6be/HV9lChoBmgJaA9DCGzrp/8scWxAlIaUUpRoFU1GAWgWR0CUxeFFDv3KdX2UKGgGaAloD0MIjnQGRl6EcECUhpRSlGgVTVgBaBZHQJTIamixmkF1fZQoaAZoCWgPQwgrFOl+DldwQJSGlFKUaBVNVQFoFkdAlMlUvTPSlXV9lChoBmgJaA9DCK8JaY1BJW1AlIaUUpRoFU0+AWgWR0CUyWjDsMRZdX2UKGgGaAloD0MI5V/LK9ePb0CUhpRSlGgVTV8BaBZHQJTJwjKPn0V1fZQoaAZoCWgPQwjylNV0fZ5wQJSGlFKUaBVNEwFoFkdAlMr4bfgrH3V9lChoBmgJaA9DCPeuQV/6CG9AlIaUUpRoFU1HAWgWR0CUy756+nIidX2UKGgGaAloD0MIzuLFwpAic0CUhpRSlGgVTQkBaBZHQJTMglme18d1fZQoaAZoCWgPQwgLC+4H/JRxQJSGlFKUaBVNMgFoFkdAlMynC0ngHnV9lChoBmgJaA9DCPrwLEEG1XJAlIaUUpRoFU0jAWgWR0CU5xLSeAd5dX2UKGgGaAloD0MI3CvzVl3NbkCUhpRSlGgVTUUBaBZHQJTnUSmIj4Z1fZQoaAZoCWgPQwiLGHYYU0BwQJSGlFKUaBVNPgFoFkdAlOgtweeWfXV9lChoBmgJaA9DCB7ec2B5/3BAlIaUUpRoFU0iAWgWR0CU65fJ3gUDdX2UKGgGaAloD0MId/S/XAtVbECUhpRSlGgVTV0BaBZHQJTsIK1G9Yh1fZQoaAZoCWgPQwh8f4P2agxwQJSGlFKUaBVNSQFoFkdAlO2Qfp2U0XV9lChoBmgJaA9DCORmuAHfT3BAlIaUUpRoFU0VAWgWR0CU9DZgXuVpdX2UKGgGaAloD0MI6znpfaOdcECUhpRSlGgVTVIBaBZHQJT1/F0gbId1fZQoaAZoCWgPQwiDo+TVOf9sQJSGlFKUaBVNSgFoFkdAlPtqij+Jg3V9lChoBmgJaA9DCKQ5svILPXBAlIaUUpRoFU1XAWgWR0CU+3fSx7iRdX2UKGgGaAloD0MIJNHLKJbxbUCUhpRSlGgVTT0BaBZHQJT8afRNRFZ1fZQoaAZoCWgPQwjogvqWubhxQJSGlFKUaBVNIgFoFkdAlPyN/J/5L3V9lChoBmgJaA9DCKAzaVN14HFAlIaUUpRoFU1eAWgWR0CU/b+X7cfvdX2UKGgGaAloD0MI5IbfTfdYckCUhpRSlGgVTTsBaBZHQJT+KOAAhjh1fZQoaAZoCWgPQwgbLJykOW1yQJSGlFKUaBVNegFoFkdAlQDp/XoTwnV9lChoBmgJaA9DCCKmRBI9/m9AlIaUUpRoFU1FAWgWR0CVAtIU8FINdX2UKGgGaAloD0MItvKS/8l4bkCUhpRSlGgVTWwBaBZHQJUEBEy+HrR1fZQoaAZoCWgPQwi2R2+4Dy9xQJSGlFKUaBVNFQFoFkdAlQSbQokRjHV9lChoBmgJaA9DCEAWokNg52NAlIaUUpRoFU3oA2gWR0CVBtlpoK2KdX2UKGgGaAloD0MIn8coz7xbcECUhpRSlGgVTSIBaBZHQJUHjRNRFZx1fZQoaAZoCWgPQwgPD2H8tFpsQJSGlFKUaBVNgAFoFkdAlQeP99+gDnV9lChoBmgJaA9DCAwCK4cWx3FAlIaUUpRoFU2BAWgWR0CVCDj5bhWHdX2UKGgGaAloD0MI1/hM9k9XbkCUhpRSlGgVTUABaBZHQJUIvf1pTMt1fZQoaAZoCWgPQwiOdXEbTXJwQJSGlFKUaBVNFwFoFkdAlQmmdAgPmXV9lChoBmgJaA9DCOhKBKp/EnJAlIaUUpRoFU03AWgWR0CVCjbVz6rOdX2UKGgGaAloD0MImgXaHZIRcUCUhpRSlGgVTUsBaBZHQJULV9x6v7p1fZQoaAZoCWgPQwgV/3dEhTJyQJSGlFKUaBVNNQFoFkdAlQtncgyM1nV9lChoBmgJaA9DCN1e0hgtV3JAlIaUUpRoFU1EAWgWR0CVC64CZF5OdX2UKGgGaAloD0MI1As+zckNckCUhpRSlGgVTUABaBZHQJUNR7Qb+991fZQoaAZoCWgPQwglWvJ4mjhyQJSGlFKUaBVNIQFoFkdAlQ2j/dZaFHV9lChoBmgJaA9DCE6XxcSmUXBAlIaUUpRoFU0tAWgWR0CVD7vexfOVdX2UKGgGaAloD0MIJjRJLCnWcECUhpRSlGgVTV4BaBZHQJUQ/Spiqhl1fZQoaAZoCWgPQwhljuVd9YAGQJSGlFKUaBVNCAFoFkdAlRGCkfs/p3V9lChoBmgJaA9DCD9wlSfQw3BAlIaUUpRoFU0zAWgWR0CVErQjD8+BdX2UKGgGaAloD0MI5dL4hVcbbkCUhpRSlGgVTUABaBZHQJUTUJQcghd1fZQoaAZoCWgPQwj+SBEZ1gBxQJSGlFKUaBVNFQFoFkdAlRQoqwyIpHV9lChoBmgJaA9DCFrW/WOhWHBAlIaUUpRoFU1pAWgWR0CVFDo11nuidX2UKGgGaAloD0MI2lTdI5vbJcCUhpRSlGgVS/BoFkdAlRRRzvJA+3V9lChoBmgJaA9DCFn5ZTAGNHJAlIaUUpRoFU0DAWgWR0CVFLwfyPMjdX2UKGgGaAloD0MIlZuopXkFcECUhpRSlGgVTVMBaBZHQJUUxwZOzpp1fZQoaAZoCWgPQwh5WRML/BRuQJSGlFKUaBVNQQFoFkdAlRUan752yXV9lChoBmgJaA9DCFa3ek56jnBAlIaUUpRoFU1LAWgWR0CVFtMK1G9YdX2UKGgGaAloD0MIqtVXV8UkcUCUhpRSlGgVTWYBaBZHQJUacLpiZv11ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo_LunarLander-v2_Priyansh/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62795890636f321bb4495c8fc4343572de9e13c4a926f2281dabf855cc10c2bc
3
+ size 87929
ppo_LunarLander-v2_Priyansh/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01abeaf449b0698cac58461181cfb4eca42637c3be20ca2c9338190b06c7ec65
3
+ size 43393
ppo_LunarLander-v2_Priyansh/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo_LunarLander-v2_Priyansh/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (196 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 257.36477001440096, "std_reward": 21.16331223398615, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-24T11:18:08.297875"}