Priyanka-Balivada
commited on
Commit
·
31e9279
1
Parent(s):
3a4bf23
electra-5-epoch-sentiment
Browse files- README.md +91 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: google/electra-small-discriminator
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- tweet_eval
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
- precision
|
11 |
+
- recall
|
12 |
+
model-index:
|
13 |
+
- name: electra-5-epoch-sentiment
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Text Classification
|
17 |
+
type: text-classification
|
18 |
+
dataset:
|
19 |
+
name: tweet_eval
|
20 |
+
type: tweet_eval
|
21 |
+
config: sentiment
|
22 |
+
split: test
|
23 |
+
args: sentiment
|
24 |
+
metrics:
|
25 |
+
- name: Accuracy
|
26 |
+
type: accuracy
|
27 |
+
value: 0.6893520026050146
|
28 |
+
- name: Precision
|
29 |
+
type: precision
|
30 |
+
value: 0.6913776305729754
|
31 |
+
- name: Recall
|
32 |
+
type: recall
|
33 |
+
value: 0.6893520026050146
|
34 |
+
---
|
35 |
+
|
36 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
37 |
+
should probably proofread and complete it, then remove this comment. -->
|
38 |
+
|
39 |
+
# electra-5-epoch-sentiment
|
40 |
+
|
41 |
+
This model is a fine-tuned version of [google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) on the tweet_eval dataset.
|
42 |
+
It achieves the following results on the evaluation set:
|
43 |
+
- Loss: 0.7949
|
44 |
+
- Accuracy: 0.6894
|
45 |
+
- Precision: 0.6914
|
46 |
+
- Recall: 0.6894
|
47 |
+
- Micro-avg-recall: 0.6894
|
48 |
+
- Micro-avg-precision: 0.6894
|
49 |
+
|
50 |
+
## Model description
|
51 |
+
|
52 |
+
More information needed
|
53 |
+
|
54 |
+
## Intended uses & limitations
|
55 |
+
|
56 |
+
More information needed
|
57 |
+
|
58 |
+
## Training and evaluation data
|
59 |
+
|
60 |
+
More information needed
|
61 |
+
|
62 |
+
## Training procedure
|
63 |
+
|
64 |
+
### Training hyperparameters
|
65 |
+
|
66 |
+
The following hyperparameters were used during training:
|
67 |
+
- learning_rate: 2e-05
|
68 |
+
- train_batch_size: 16
|
69 |
+
- eval_batch_size: 16
|
70 |
+
- seed: 42
|
71 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
72 |
+
- lr_scheduler_type: linear
|
73 |
+
- num_epochs: 5
|
74 |
+
|
75 |
+
### Training results
|
76 |
+
|
77 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Micro-avg-recall | Micro-avg-precision |
|
78 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:----------------:|:-------------------:|
|
79 |
+
| 0.5949 | 1.0 | 2851 | 0.6963 | 0.6926 | 0.6943 | 0.6926 | 0.6926 | 0.6926 |
|
80 |
+
| 0.6502 | 2.0 | 5702 | 0.7348 | 0.6911 | 0.6929 | 0.6911 | 0.6911 | 0.6911 |
|
81 |
+
| 0.556 | 3.0 | 8553 | 0.7322 | 0.6943 | 0.6952 | 0.6943 | 0.6943 | 0.6943 |
|
82 |
+
| 0.4561 | 4.0 | 11404 | 0.7601 | 0.6895 | 0.6916 | 0.6895 | 0.6895 | 0.6895 |
|
83 |
+
| 0.471 | 5.0 | 14255 | 0.7949 | 0.6894 | 0.6914 | 0.6894 | 0.6894 | 0.6894 |
|
84 |
+
|
85 |
+
|
86 |
+
### Framework versions
|
87 |
+
|
88 |
+
- Transformers 4.33.0
|
89 |
+
- Pytorch 2.0.0
|
90 |
+
- Datasets 2.1.0
|
91 |
+
- Tokenizers 0.13.3
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f72e8b10ffef011f38f70878da32bac95fb98fc601ec1f7ad4902a04925dbd7
|
3 |
+
size 4027
|