Add files using upload-large-folder tool
Browse files- .gitattributes +3 -0
- README.md +281 -0
- genai_config.json +54 -0
- model.onnx +3 -0
- model.onnx.data +3 -0
- special_tokens_map.json +23 -0
- tokenizer.json +3 -0
- tokenizer_config.json +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
tokenizer_config.json filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
model.onnx.data filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: cc-by-nc-4.0
|
| 3 |
+
language:
|
| 4 |
+
- zh
|
| 5 |
+
- en
|
| 6 |
+
base_model:
|
| 7 |
+
- meta-llama/Llama-3.2-3B-Instruct
|
| 8 |
+
- unsloth/Llasa-3B
|
| 9 |
+
tags:
|
| 10 |
+
- Text-to-Speech
|
| 11 |
+
- onnx
|
| 12 |
+
- onnxruntime-genai
|
| 13 |
+
- onnxruntime
|
| 14 |
+
pipeline_tag: text-to-speech
|
| 15 |
+
library_name: onnxruntime-genai
|
| 16 |
+
base_model_relation: quantized
|
| 17 |
+
---
|
| 18 |
+
<div>
|
| 19 |
+
<p style="margin-bottom: 0; margin-top: 0;">
|
| 20 |
+
<strong>See <a href="https://huggingface.co/collections/unsloth/text-to-speech-tts-models-68007ab12522e96be1e02155">our collection</a> for all our TTS model uploads.</strong>
|
| 21 |
+
</p>
|
| 22 |
+
<p style="margin-bottom: 0;">
|
| 23 |
+
<em>Learn to fine-tune TTS models - <a href="https://docs.unsloth.ai/basics/text-to-speech-tts-fine-tuning">Read our Guide</a>.</em>
|
| 24 |
+
</p>
|
| 25 |
+
<p style="margin-top: 0;margin-bottom: 0;">
|
| 26 |
+
<em><a href="https://docs.unsloth.ai/basics/unsloth-dynamic-v2.0-gguf">Unsloth Dynamic 2.0</a> achieves superior accuracy & outperforms other leading quants.</em>
|
| 27 |
+
</p>
|
| 28 |
+
<div style="display: flex; gap: 5px; align-items: center; ">
|
| 29 |
+
<a href="https://github.com/unslothai/unsloth/">
|
| 30 |
+
<img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="133">
|
| 31 |
+
</a>
|
| 32 |
+
<a href="https://discord.gg/unsloth">
|
| 33 |
+
<img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173">
|
| 34 |
+
</a>
|
| 35 |
+
<a href="https://docs.unsloth.ai/basics/text-to-speech-tts-fine-tuning">
|
| 36 |
+
<img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143">
|
| 37 |
+
</a>
|
| 38 |
+
</div>
|
| 39 |
+
<h1 style="margin-top: 0rem;">✨ Run & Fine-tune TTS models with Unsloth!</h1>
|
| 40 |
+
</div>
|
| 41 |
+
|
| 42 |
+
- Fine-tune TTS models for free using our Google [Colab notebooks here](https://docs.unsloth.ai/get-started/unsloth-notebooks#text-to-speech-tts-notebooks)!
|
| 43 |
+
- Read our Blog about TTS support: [unsloth.ai/blog/tts](https://docs.unsloth.ai/basics/text-to-speech-tts-fine-tuning)
|
| 44 |
+
|
| 45 |
+
| Unsloth supports | Free Notebooks | Performance | Memory use |
|
| 46 |
+
|-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
|
| 47 |
+
| **Llasa-3B** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llasa_TTS_(3B).ipynb) | 1.5x faster | 58% less |
|
| 48 |
+
| **Whisper Large V3** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Whisper.ipynb) | 1.5x faster | 50% less |
|
| 49 |
+
| **Qwen3 (14B)** | [▶️ Start on Colab](https://docs.unsloth.ai/get-started/unsloth-notebooks) | 2x faster | 70% less |
|
| 50 |
+
| **Llama 3.2 Vision (11B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(11B)-Vision.ipynb) | 1.8x faster | 50% less |
|
| 51 |
+
|
| 52 |
+
[](https://arxiv.org/abs/2502.04128)
|
| 53 |
+
|
| 54 |
+
**Update (2025-05-10):** Sometimes I find that top_p=0.95 and temperature=0.9 produce more stable results.
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
**Update (2025-02-13):** Add [Llasa finetune instruction](https://github.com/zhenye234/LLaSA_training/tree/main/finetune).
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
**Update (2025-02-07):** Our paper has been released!
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
LLaSA: Scaling Train-Time and Inference-Time Compute for LLaMA-based Speech Synthesis
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
- **Train from Scratch**: If you want to train the model from scratch, use the [LLaSA Training Repository](https://github.com/zhenye234/LLaSA_training).
|
| 67 |
+
|
| 68 |
+
- **Scale for Test-Time Computation**: If you want to experiment with scaling for test-time computation, use the [LLaSA Testing Repository](https://github.com/zhenye234/LLaSA_inference).
|
| 69 |
+
|
| 70 |
+
## Model Information
|
| 71 |
+
Our model, Llasa, is a text-to-speech (TTS) system that extends the text-based LLaMA (1B,3B, and 8B) language model by incorporating speech tokens from the XCodec2 codebook,
|
| 72 |
+
which contains 65,536 tokens. We trained Llasa on a dataset comprising 250,000 hours of Chinese-English speech data.
|
| 73 |
+
The model is capable of generating speech **either solely from input text or by utilizing a given speech prompt.**
|
| 74 |
+
|
| 75 |
+
The method is seamlessly compatible with the Llama framework, making training TTS similar as training LLM (convert audios into single-codebook tokens and simply view it as a special language). It opens the possiblity of existing method for compression, acceleration and finetuning for LLM to be applied.
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
## How to use
|
| 80 |
+
Install [XCodec2](https://huggingface.co/HKUSTAudio/xcodec2).
|
| 81 |
+
|
| 82 |
+
**1. Speech synthesis solely from input text**
|
| 83 |
+
```python
|
| 84 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 85 |
+
import torch
|
| 86 |
+
import soundfile as sf
|
| 87 |
+
|
| 88 |
+
llasa_3b ='HKUSTAudio/Llasa-3B'
|
| 89 |
+
|
| 90 |
+
tokenizer = AutoTokenizer.from_pretrained(llasa_3b)
|
| 91 |
+
model = AutoModelForCausalLM.from_pretrained(llasa_3b)
|
| 92 |
+
model.eval()
|
| 93 |
+
model.to('cuda')
|
| 94 |
+
|
| 95 |
+
from xcodec2.modeling_xcodec2 import XCodec2Model
|
| 96 |
+
|
| 97 |
+
model_path = "HKUSTAudio/xcodec2"
|
| 98 |
+
|
| 99 |
+
Codec_model = XCodec2Model.from_pretrained(model_path)
|
| 100 |
+
Codec_model.eval().cuda()
|
| 101 |
+
|
| 102 |
+
input_text = 'Dealing with family secrets is never easy. Yet, sometimes, omission is a form of protection, intending to safeguard some from the harsh truths. One day, I hope you understand the reasons behind my actions. Until then, Anna, please, bear with me.'
|
| 103 |
+
# input_text = '突然,身边一阵笑声。我看着他们,意气风发地挺直了胸膛,甩了甩那稍显肉感的双臂,轻笑道:"我身上的肉,是为了掩饰我爆棚的魅力,否则,岂不吓坏了你们呢?"'
|
| 104 |
+
def ids_to_speech_tokens(speech_ids):
|
| 105 |
+
|
| 106 |
+
speech_tokens_str = []
|
| 107 |
+
for speech_id in speech_ids:
|
| 108 |
+
speech_tokens_str.append(f"<|s_{speech_id}|>")
|
| 109 |
+
return speech_tokens_str
|
| 110 |
+
|
| 111 |
+
def extract_speech_ids(speech_tokens_str):
|
| 112 |
+
|
| 113 |
+
speech_ids = []
|
| 114 |
+
for token_str in speech_tokens_str:
|
| 115 |
+
if token_str.startswith('<|s_') and token_str.endswith('|>'):
|
| 116 |
+
num_str = token_str[4:-2]
|
| 117 |
+
|
| 118 |
+
num = int(num_str)
|
| 119 |
+
speech_ids.append(num)
|
| 120 |
+
else:
|
| 121 |
+
print(f"Unexpected token: {token_str}")
|
| 122 |
+
return speech_ids
|
| 123 |
+
|
| 124 |
+
#TTS start!
|
| 125 |
+
with torch.no_grad():
|
| 126 |
+
|
| 127 |
+
formatted_text = f"<|TEXT_UNDERSTANDING_START|>{input_text}<|TEXT_UNDERSTANDING_END|>"
|
| 128 |
+
|
| 129 |
+
# Tokenize the text
|
| 130 |
+
chat = [
|
| 131 |
+
{"role": "user", "content": "Convert the text to speech:" + formatted_text},
|
| 132 |
+
{"role": "assistant", "content": "<|SPEECH_GENERATION_START|>"}
|
| 133 |
+
]
|
| 134 |
+
|
| 135 |
+
input_ids = tokenizer.apply_chat_template(
|
| 136 |
+
chat,
|
| 137 |
+
tokenize=True,
|
| 138 |
+
return_tensors='pt',
|
| 139 |
+
continue_final_message=True
|
| 140 |
+
)
|
| 141 |
+
input_ids = input_ids.to('cuda')
|
| 142 |
+
speech_end_id = tokenizer.convert_tokens_to_ids('<|SPEECH_GENERATION_END|>')
|
| 143 |
+
|
| 144 |
+
# Generate the speech autoregressively
|
| 145 |
+
outputs = model.generate(
|
| 146 |
+
input_ids,
|
| 147 |
+
max_length=2048, # We trained our model with a max length of 2048
|
| 148 |
+
eos_token_id= speech_end_id ,
|
| 149 |
+
do_sample=True,
|
| 150 |
+
top_p=1, # Adjusts the diversity of generated content
|
| 151 |
+
temperature=0.8, # Controls randomness in output
|
| 152 |
+
)
|
| 153 |
+
# Extract the speech tokens
|
| 154 |
+
generated_ids = outputs[0][input_ids.shape[1]:-1]
|
| 155 |
+
|
| 156 |
+
speech_tokens = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
| 157 |
+
|
| 158 |
+
# Convert token <|s_23456|> to int 23456
|
| 159 |
+
speech_tokens = extract_speech_ids(speech_tokens)
|
| 160 |
+
|
| 161 |
+
speech_tokens = torch.tensor(speech_tokens).cuda().unsqueeze(0).unsqueeze(0)
|
| 162 |
+
|
| 163 |
+
# Decode the speech tokens to speech waveform
|
| 164 |
+
gen_wav = Codec_model.decode_code(speech_tokens)
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
sf.write("gen.wav", gen_wav[0, 0, :].cpu().numpy(), 16000)
|
| 168 |
+
```
|
| 169 |
+
|
| 170 |
+
**2. Speech synthesis utilizing a given speech prompt**
|
| 171 |
+
|
| 172 |
+
```python
|
| 173 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 174 |
+
import torch
|
| 175 |
+
import soundfile as sf
|
| 176 |
+
|
| 177 |
+
llasa_3b ='HKUSTAudio/Llasa-3B'
|
| 178 |
+
|
| 179 |
+
tokenizer = AutoTokenizer.from_pretrained(llasa_3b)
|
| 180 |
+
model = AutoModelForCausalLM.from_pretrained(llasa_3b)
|
| 181 |
+
model.eval()
|
| 182 |
+
model.to('cuda')
|
| 183 |
+
|
| 184 |
+
from xcodec2.modeling_xcodec2 import XCodec2Model
|
| 185 |
+
|
| 186 |
+
model_path = "HKUSTAudio/xcodec2"
|
| 187 |
+
|
| 188 |
+
Codec_model = XCodec2Model.from_pretrained(model_path)
|
| 189 |
+
Codec_model.eval().cuda()
|
| 190 |
+
# only 16khz speech support!
|
| 191 |
+
prompt_wav, sr = sf.read("太乙真人.wav") # you can find wav in Files
|
| 192 |
+
#prompt_wav, sr = sf.read("Anna.wav") # English prompt
|
| 193 |
+
prompt_wav = torch.from_numpy(prompt_wav).float().unsqueeze(0)
|
| 194 |
+
|
| 195 |
+
prompt_text ="对,这就是我万人敬仰的太乙真人,虽然有点婴儿肥,但也掩不住我逼人的帅气。"
|
| 196 |
+
#promt_text = "A chance to leave him alone, but... No. She just wanted to see him again. Anna, you don't know how it feels to lose a sister. Anna, I'm sorry, but your father asked me not to tell you anything."
|
| 197 |
+
target_text = '突然,身边一阵笑声。我看着他们,意气风发地挺直了胸膛,甩了甩那稍显肉感的双臂,轻笑道:"我身上的肉,是为了掩饰我爆棚的魅力,否则,岂不吓坏了你们呢?"'
|
| 198 |
+
#target_text = "Dealing with family secrets is never easy. Yet, sometimes, omission is a form of protection, intending to safeguard some from the harsh truths. One day, I hope you understand the reasons behind my actions. Until then, Anna, please, bear with me."
|
| 199 |
+
input_text = prompt_text + target_text
|
| 200 |
+
|
| 201 |
+
def ids_to_speech_tokens(speech_ids):
|
| 202 |
+
|
| 203 |
+
speech_tokens_str = []
|
| 204 |
+
for speech_id in speech_ids:
|
| 205 |
+
speech_tokens_str.append(f"<|s_{speech_id}|>")
|
| 206 |
+
return speech_tokens_str
|
| 207 |
+
|
| 208 |
+
def extract_speech_ids(speech_tokens_str):
|
| 209 |
+
|
| 210 |
+
speech_ids = []
|
| 211 |
+
for token_str in speech_tokens_str:
|
| 212 |
+
if token_str.startswith('<|s_') and token_str.endswith('|>'):
|
| 213 |
+
num_str = token_str[4:-2]
|
| 214 |
+
|
| 215 |
+
num = int(num_str)
|
| 216 |
+
speech_ids.append(num)
|
| 217 |
+
else:
|
| 218 |
+
print(f"Unexpected token: {token_str}")
|
| 219 |
+
return speech_ids
|
| 220 |
+
|
| 221 |
+
#TTS start!
|
| 222 |
+
with torch.no_grad():
|
| 223 |
+
# Encode the prompt wav
|
| 224 |
+
vq_code_prompt = Codec_model.encode_code(input_waveform=prompt_wav)
|
| 225 |
+
print("Prompt Vq Code Shape:", vq_code_prompt.shape )
|
| 226 |
+
|
| 227 |
+
vq_code_prompt = vq_code_prompt[0,0,:]
|
| 228 |
+
# Convert int 12345 to token <|s_12345|>
|
| 229 |
+
speech_ids_prefix = ids_to_speech_tokens(vq_code_prompt)
|
| 230 |
+
|
| 231 |
+
formatted_text = f"<|TEXT_UNDERSTANDING_START|>{input_text}<|TEXT_UNDERSTANDING_END|>"
|
| 232 |
+
|
| 233 |
+
# Tokenize the text and the speech prefix
|
| 234 |
+
chat = [
|
| 235 |
+
{"role": "user", "content": "Convert the text to speech:" + formatted_text},
|
| 236 |
+
{"role": "assistant", "content": "<|SPEECH_GENERATION_START|>" + ''.join(speech_ids_prefix)}
|
| 237 |
+
]
|
| 238 |
+
|
| 239 |
+
input_ids = tokenizer.apply_chat_template(
|
| 240 |
+
chat,
|
| 241 |
+
tokenize=True,
|
| 242 |
+
return_tensors='pt',
|
| 243 |
+
continue_final_message=True
|
| 244 |
+
)
|
| 245 |
+
input_ids = input_ids.to('cuda')
|
| 246 |
+
speech_end_id = tokenizer.convert_tokens_to_ids('<|SPEECH_GENERATION_END|>')
|
| 247 |
+
|
| 248 |
+
# Generate the speech autoregressively
|
| 249 |
+
outputs = model.generate(
|
| 250 |
+
input_ids,
|
| 251 |
+
max_length=2048, # We trained our model with a max length of 2048
|
| 252 |
+
eos_token_id= speech_end_id ,
|
| 253 |
+
do_sample=True,
|
| 254 |
+
top_p=1,
|
| 255 |
+
temperature=0.8,
|
| 256 |
+
)
|
| 257 |
+
# Extract the speech tokens
|
| 258 |
+
generated_ids = outputs[0][input_ids.shape[1]-len(speech_ids_prefix):-1]
|
| 259 |
+
|
| 260 |
+
speech_tokens = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
| 261 |
+
|
| 262 |
+
# Convert token <|s_23456|> to int 23456
|
| 263 |
+
speech_tokens = extract_speech_ids(speech_tokens)
|
| 264 |
+
|
| 265 |
+
speech_tokens = torch.tensor(speech_tokens).cuda().unsqueeze(0).unsqueeze(0)
|
| 266 |
+
|
| 267 |
+
# Decode the speech tokens to speech waveform
|
| 268 |
+
gen_wav = Codec_model.decode_code(speech_tokens)
|
| 269 |
+
|
| 270 |
+
# if only need the generated part
|
| 271 |
+
# gen_wav = gen_wav[:,:,prompt_wav.shape[1]:]
|
| 272 |
+
|
| 273 |
+
sf.write("gen.wav", gen_wav[0, 0, :].cpu().numpy(), 16000)
|
| 274 |
+
```
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
## Disclaimer
|
| 278 |
+
|
| 279 |
+
This model is licensed under the CC BY-NC 4.0 License, which prohibits free commercial use because of ethics and privacy concerns; detected violations will result in legal consequences.
|
| 280 |
+
|
| 281 |
+
This codebase is strictly prohibited from being used for any illegal purposes in any country or region. Please refer to your local laws about DMCA and other related laws.
|
genai_config.json
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model": {
|
| 3 |
+
"bos_token_id": 128000,
|
| 4 |
+
"context_length": 131072,
|
| 5 |
+
"decoder": {
|
| 6 |
+
"session_options": {
|
| 7 |
+
"log_id": "onnxruntime-genai",
|
| 8 |
+
"provider_options": []
|
| 9 |
+
},
|
| 10 |
+
"filename": "model.onnx",
|
| 11 |
+
"head_size": 128,
|
| 12 |
+
"hidden_size": 3072,
|
| 13 |
+
"inputs": {
|
| 14 |
+
"input_ids": "input_ids",
|
| 15 |
+
"attention_mask": "attention_mask",
|
| 16 |
+
"position_ids": "position_ids",
|
| 17 |
+
"past_key_names": "past_key_values.%d.key",
|
| 18 |
+
"past_value_names": "past_key_values.%d.value"
|
| 19 |
+
},
|
| 20 |
+
"outputs": {
|
| 21 |
+
"logits": "logits",
|
| 22 |
+
"present_key_names": "present.%d.key",
|
| 23 |
+
"present_value_names": "present.%d.value"
|
| 24 |
+
},
|
| 25 |
+
"num_attention_heads": 24,
|
| 26 |
+
"num_hidden_layers": 28,
|
| 27 |
+
"num_key_value_heads": 8
|
| 28 |
+
},
|
| 29 |
+
"eos_token_id": [
|
| 30 |
+
128001,
|
| 31 |
+
128008,
|
| 32 |
+
128009
|
| 33 |
+
],
|
| 34 |
+
"pad_token_id": 128001,
|
| 35 |
+
"type": "llama",
|
| 36 |
+
"vocab_size": 193800
|
| 37 |
+
},
|
| 38 |
+
"search": {
|
| 39 |
+
"diversity_penalty": 0.0,
|
| 40 |
+
"do_sample": true,
|
| 41 |
+
"early_stopping": true,
|
| 42 |
+
"length_penalty": 1.0,
|
| 43 |
+
"max_length": 131072,
|
| 44 |
+
"min_length": 0,
|
| 45 |
+
"no_repeat_ngram_size": 0,
|
| 46 |
+
"num_beams": 1,
|
| 47 |
+
"num_return_sequences": 1,
|
| 48 |
+
"past_present_share_buffer": false,
|
| 49 |
+
"repetition_penalty": 1.0,
|
| 50 |
+
"temperature": 0.6,
|
| 51 |
+
"top_k": 1,
|
| 52 |
+
"top_p": 0.9
|
| 53 |
+
}
|
| 54 |
+
}
|
model.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:440b8e8c6dfd9c5b562c4255c797d44e661d1b39d1b483ed1926d768a82bdfa3
|
| 3 |
+
size 653885
|
model.onnx.data
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7fa1bdeecda5008855cb6bfde5efb9fb3117dec297534de1d609062e6a0ddee0
|
| 3 |
+
size 8052463616
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<|begin_of_text|>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "<|eot_id|>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "<|eot_id|>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
}
|
| 23 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:71d92f3dbf3c23d734e6356241cef149b42fe79848176a54145b6f9a886fd73b
|
| 3 |
+
size 29521206
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9cf6f8d6e3395f40bf6881f92e621e10e47aae25f5f090052adafb83bdc75661
|
| 3 |
+
size 11710454
|