PraveenKishore commited on
Commit
2015249
·
1 Parent(s): 336240d

Train agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 231.13 +/- 16.80
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f50497cca70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f50497ccb00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f50497ccb90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f50497ccc20>", "_build": "<function ActorCriticPolicy._build at 0x7f50497cccb0>", "forward": "<function ActorCriticPolicy.forward at 0x7f50497ccd40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f50497ccdd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f50497cce60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f50497ccef0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f50497ccf80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f50497d2050>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5049819780>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1666621834137687310, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGNYf769J0s8e3TYO5bYqLkDrty9kO5+OgAAgD8AAIA/5tWQPfawQLqX3y07kznjNhIaHTuY5Em6AACAPwAAgD86edy+Za4XP3PbBr23Whm+noyHvcbwd70AAAAAAAAAAGrNDL/0dFa+kscFPktyKL3DKAU/LXx3vgAAAAAAAAAAGnUfvnE+L7uVppa8Ve/xuZdirDzQxM06AACAPwAAgD+a0Fc9SCHeuEyenbxuUtq85Wd7u/Pgr7wAAAAAAAAAADMHibzDGRm6TWRiOoMckLW7lsM6hFWTtAAAgD8AAIA/2srDvY8ucrrGGnI7h2HaNrA0d7qxyIu6AACAPwAAgD+7QsO+XV95Pn0PWL4/Laa+QWBjPSqzYT0AAAAAAAAAADMBXT3II7w+tiytvYVFC77jd1A84qNnPAAAAAAAAAAArUNtvmiLybzrjls7mentOVXQLz578X26AACAPwAAgD9mPlK8NFa7P6vsGL6JIEw+82quvNumsb0AAAAAAAAAAAC3B76Jyvg+An+TPuuFdb6x8qU+HkXKPQAAAAAAAAAAgPEAPqai2z5EHjy9ELkmvnhMLz01bHo9AAAAAAAAAACS84K+N7USvZPXaTsC7xQ6yimCPm0smboAAIA/AACAP9poJ77WC80+EFGevSx7Z77j3Hm9TfHjPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIP8Vx4NXuRkCUhpRSlIwBbJRLzYwBdJRHQIVk7asZHd51fZQoaAZoCWgPQwgwLeqT3MxcQJSGlFKUaBVN6ANoFkdAhXG9SEUTMHV9lChoBmgJaA9DCLRWtDnOuVdAlIaUUpRoFU3oA2gWR0CFcr6JqIrOdX2UKGgGaAloD0MIIVuWr8tJX0CUhpRSlGgVTegDaBZHQIVzQizLOiZ1fZQoaAZoCWgPQwhfCaTEroNgQJSGlFKUaBVN6ANoFkdAhXk5j6N2knV9lChoBmgJaA9DCBLeHoSAvP+/lIaUUpRoFUvxaBZHQIV6MQPI4l11fZQoaAZoCWgPQwgMWkjA6KRcQJSGlFKUaBVN6ANoFkdAhXqG4AjptHV9lChoBmgJaA9DCBDpt68D7yLAlIaUUpRoFUvwaBZHQIWjqGWUr091fZQoaAZoCWgPQwgdHVcju6I4QJSGlFKUaBVLyWgWR0CFrKRgZ0jkdX2UKGgGaAloD0MIYB3HD5X0VECUhpRSlGgVTegDaBZHQIW7dSde6Zp1fZQoaAZoCWgPQwi3m+CbpihqQJSGlFKUaBVNRQFoFkdAhcIoxgy/K3V9lChoBmgJaA9DCP1qDhDMUS/AlIaUUpRoFU0jAWgWR0CFz4wzLwF1dX2UKGgGaAloD0MIOUNxx5uNYUCUhpRSlGgVTegDaBZHQIXSAm3OObR1fZQoaAZoCWgPQwiGVFG8ynBiQJSGlFKUaBVN6ANoFkdAhdUfRVp9JHV9lChoBmgJaA9DCJks7j8yH05AlIaUUpRoFU3oA2gWR0CF1xpdrwfAdX2UKGgGaAloD0MILGNDN/s7O0CUhpRSlGgVS9doFkdAhdv158jRlnV9lChoBmgJaA9DCDf6mA8IYltAlIaUUpRoFU3oA2gWR0CF8gyN4qwydX2UKGgGaAloD0MIC0eQSrE9Y0CUhpRSlGgVTegDaBZHQIXy3DgqEvl1fZQoaAZoCWgPQwhF2safqBwhwJSGlFKUaBVN6ANoFkdAhfS9+gDifnV9lChoBmgJaA9DCJ1KBoAqK19AlIaUUpRoFU3oA2gWR0CF+ZD4xk/bdX2UKGgGaAloD0MIglZgyGr5YECUhpRSlGgVTegDaBZHQIX5l43WFvh1fZQoaAZoCWgPQwhIb7iP3BhGQJSGlFKUaBVN6ANoFkdAhg5WHLzPKXV9lChoBmgJaA9DCIguqG+Z8FRAlIaUUpRoFU3oA2gWR0CGD/7yhBZ7dX2UKGgGaAloD0MIuvjbniDRH0CUhpRSlGgVS9ZoFkdAhhoTuv2XcHV9lChoBmgJaA9DCDdwB+qUwlxAlIaUUpRoFU3oA2gWR0CGHWXiR4hVdX2UKGgGaAloD0MIWFhwP+CiWkCUhpRSlGgVTegDaBZHQIYeAjlgc951fZQoaAZoCWgPQwjopPeNrz1gQJSGlFKUaBVN6ANoFkdAhiQRHG0eEXV9lChoBmgJaA9DCD/FceBVl2dAlIaUUpRoFU3xAWgWR0CGXJIYm9g4dX2UKGgGaAloD0MIVmKelbQuVkCUhpRSlGgVTegDaBZHQIZjnMQmNR51fZQoaAZoCWgPQwhAFTduMYcpwJSGlFKUaBVNAwFoFkdAhmirl/6O53V9lChoBmgJaA9DCBXGFoIcgFVAlIaUUpRoFU3oA2gWR0CGeE0SAYpEdX2UKGgGaAloD0MIK702GyvZYECUhpRSlGgVTegDaBZHQIZ64te2NNt1fZQoaAZoCWgPQwgwKqkT0INhQJSGlFKUaBVN6ANoFkdAhn3vluFYdXV9lChoBmgJaA9DCOif4GJF42JAlIaUUpRoFU3oA2gWR0CGf/z1bqyGdX2UKGgGaAloD0MIVRSvsjYMYECUhpRSlGgVTegDaBZHQIaExHNHH3l1fZQoaAZoCWgPQwjx1CMNbjBeQJSGlFKUaBVN6ANoFkdAhpkgUDdP+HV9lChoBmgJaA9DCK0W2GMiq11AlIaUUpRoFU3oA2gWR0CGmuu/1xsEdX2UKGgGaAloD0MIoTGTqBfbUMCUhpRSlGgVS/doFkdAhpunLzPKMnV9lChoBmgJaA9DCK4upwTEJV5AlIaUUpRoFU3oA2gWR0CGn28zyjHodX2UKGgGaAloD0MIBrggW5ZuYECUhpRSlGgVTegDaBZHQIawN2zOX3R1fZQoaAZoCWgPQwg4MLlRZAJWQJSGlFKUaBVN6ANoFkdAhrFQ84gieXV9lChoBmgJaA9DCBWscTada2JAlIaUUpRoFU3oA2gWR0CGuANn5BTodX2UKGgGaAloD0MIWFcFajGOSECUhpRSlGgVTegDaBZHQIa6tlqagEl1fZQoaAZoCWgPQwihuU4jLeFNQJSGlFKUaBVN6ANoFkdAhrtObRWtEHV9lChoBmgJaA9DCBCxwcJJ2iDAlIaUUpRoFUvfaBZHQIb6SMxXXAd1fZQoaAZoCWgPQwjAstKkFM9qQJSGlFKUaBVNBQNoFkdAhv/g3tKIznV9lChoBmgJaA9DCMcuUb01zVxAlIaUUpRoFU3oA2gWR0CHALyvs7dSdX2UKGgGaAloD0MIU0Da/wBbGcCUhpRSlGgVTSgBaBZHQIcB0Pvrnkl1fZQoaAZoCWgPQwjP3EPCd69gQJSGlFKUaBVN6ANoFkdAhwa/uLJjlXV9lChoBmgJaA9DCBNlbylnB2JAlIaUUpRoFU3oA2gWR0CHC0pc5bQkdX2UKGgGaAloD0MIn8cozzzhYkCUhpRSlGgVTegDaBZHQIcb99Sde6Z1fZQoaAZoCWgPQwgdylAVUw1fQJSGlFKUaBVN6ANoFkdAhx87JOnEVHV9lChoBmgJaA9DCBEawcb1xyDAlIaUUpRoFU0hAWgWR0CHIfwx33YddX2UKGgGaAloD0MIg6eQK/XTXUCUhpRSlGgVTegDaBZHQIcmgC0WuYB1fZQoaAZoCWgPQwj9v+rIkc9cQJSGlFKUaBVN6ANoFkdAhz552Qnx8XV9lChoBmgJaA9DCCaPp+UHslxAlIaUUpRoFU3oA2gWR0CHQJtShrWRdX2UKGgGaAloD0MIX7Uy4RfNYECUhpRSlGgVTegDaBZHQIdBhDkU9IR1fZQoaAZoCWgPQwjTM73EWKavv5SGlFKUaBVNEgFoFkdAh0L8qnWJ8HV9lChoBmgJaA9DCEMaFTjZx2dAlIaUUpRoFU3oA2gWR0CHRjKU3XI2dX2UKGgGaAloD0MI3UHsTKFvWUCUhpRSlGgVTegDaBZHQIdiG/pMYdh1fZQoaAZoCWgPQwjj++JSFbZiQJSGlFKUaBVN6ANoFkdAh2SVAzHjqHV9lChoBmgJaA9DCNrKS/6nP2NAlIaUUpRoFU3oA2gWR0CHZQUnG828dX2UKGgGaAloD0MIi/87okIxNcCUhpRSlGgVTQoBaBZHQIdl7TjNpud1fZQoaAZoCWgPQwiBeciUD4tgQJSGlFKUaBVN6ANoFkdAh50e2d/ax3V9lChoBmgJaA9DCGqiz0cZ219AlIaUUpRoFU3oA2gWR0CHow5LAYYSdX2UKGgGaAloD0MIXMtkOB7FYkCUhpRSlGgVTegDaBZHQIelUhNdqtZ1fZQoaAZoCWgPQwiBIatbvVpoQJSGlFKUaBVNDwJoFkdAh6oqzRhMJ3V9lChoBmgJaA9DCB4YQPjQ42FAlIaUUpRoFU3oA2gWR0CHqsieumrKdX2UKGgGaAloD0MIxHx5AXbqYECUhpRSlGgVTegDaBZHQIevk2xY7q91fZQoaAZoCWgPQwh872/Q3pxgQJSGlFKUaBVN6ANoFkdAh8DtayKNynV9lChoBmgJaA9DCNPcCmE1xVVAlIaUUpRoFU3oA2gWR0CHxzqiXY16dX2UKGgGaAloD0MINlZinhVcYECUhpRSlGgVTegDaBZHQIfMD1oQFs51fZQoaAZoCWgPQwg1CHO7l5sCQJSGlFKUaBVNQgFoFkdAh9iZY5ksjHV9lChoBmgJaA9DCBWMSuoEtGFAlIaUUpRoFU3oA2gWR0CH5N60IC2ddX2UKGgGaAloD0MI2spL/ifIW0CUhpRSlGgVTegDaBZHQIfnkK1G9Yh1fZQoaAZoCWgPQwjU00fgDwlPwJSGlFKUaBVNDAFoFkdAh+q0z9CNTHV9lChoBmgJaA9DCMZpiCr8M2FAlIaUUpRoFU3oA2gWR0CH64xzJZGKdX2UKGgGaAloD0MI+WcG8YHMYUCUhpRSlGgVTegDaBZHQIgFjOgQHzJ1fZQoaAZoCWgPQwjLg/QUuWphQJSGlFKUaBVN6ANoFkdAiAfYiX6ZY3V9lChoBmgJaA9DCA9EFmlixmNAlIaUUpRoFU3oA2gWR0CICD26ClJpdX2UKGgGaAloD0MIYaku4GUOVECUhpRSlGgVTegDaBZHQIgJJBu4wyt1fZQoaAZoCWgPQwjGounsZKA5wJSGlFKUaBVNAAFoFkdAiAqtmthd+3V9lChoBmgJaA9DCDEL7Zxm/2FAlIaUUpRoFU3oA2gWR0CIPt5dGAkLdX2UKGgGaAloD0MI647FNilYYkCUhpRSlGgVTegDaBZHQIhEUcOskpt1fZQoaAZoCWgPQwj9vRQetEViQJSGlFKUaBVN6ANoFkdAiEYnEdeY2XV9lChoBmgJaA9DCIeL3NPVlVNAlIaUUpRoFU3oA2gWR0CISloPCl7/dX2UKGgGaAloD0MIdv7tsl9gYUCUhpRSlGgVTegDaBZHQIhK4HE/B311fZQoaAZoCWgPQwicTUcAtx9hQJSGlFKUaBVN6ANoFkdAiF7HEl3QlnV9lChoBmgJaA9DCFTHKqVniV5AlIaUUpRoFU3oA2gWR0CIaPDQZ4wAdX2UKGgGaAloD0MIPe5brROFT0CUhpRSlGgVTegDaBZHQIh0g3YL9dh1fZQoaAZoCWgPQwhKDW0ANhJhQJSGlFKUaBVN6ANoFkdAiH9TER8MNXV9lChoBmgJaA9DCE93nnhOHmNAlIaUUpRoFU3oA2gWR0CIgciDdxhldX2UKGgGaAloD0MIr9FyoIcUYECUhpRSlGgVTegDaBZHQIiE3jKgZjx1fZQoaAZoCWgPQwjqPCr+775cQJSGlFKUaBVN6ANoFkdAiKE5KnNxEXV9lChoBmgJaA9DCHKjyFpDyQfAlIaUUpRoFUvsaBZHQIijTQPZqVR1fZQoaAZoCWgPQwj/d0SF6otgQJSGlFKUaBVN6ANoFkdAiKOyCOFQEnV9lChoBmgJaA9DCFngK7r1ZVdAlIaUUpRoFU3oA2gWR0CIpCRT0g8sdX2UKGgGaAloD0MIVik900svUkCUhpRSlGgVTegDaBZHQIilAPf8/EB1fZQoaAZoCWgPQwjEeM2rOtlfQJSGlFKUaBVN6ANoFkdAiKZ62fChvnV9lChoBmgJaA9DCK6ek963RmZAlIaUUpRoFU3oA2gWR0CItHilSCOFdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:64314b3e4e708fa13cbe0162c2486bf8a8d32c4ce3f48967e6c1ab08e4220bb1
3
+ size 147142
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f50497cca70>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f50497ccb00>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f50497ccb90>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f50497ccc20>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f50497cccb0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f50497ccd40>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f50497ccdd0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f50497cce60>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f50497ccef0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f50497ccf80>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f50497d2050>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f5049819780>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1666621834137687310,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGNYf769J0s8e3TYO5bYqLkDrty9kO5+OgAAgD8AAIA/5tWQPfawQLqX3y07kznjNhIaHTuY5Em6AACAPwAAgD86edy+Za4XP3PbBr23Whm+noyHvcbwd70AAAAAAAAAAGrNDL/0dFa+kscFPktyKL3DKAU/LXx3vgAAAAAAAAAAGnUfvnE+L7uVppa8Ve/xuZdirDzQxM06AACAPwAAgD+a0Fc9SCHeuEyenbxuUtq85Wd7u/Pgr7wAAAAAAAAAADMHibzDGRm6TWRiOoMckLW7lsM6hFWTtAAAgD8AAIA/2srDvY8ucrrGGnI7h2HaNrA0d7qxyIu6AACAPwAAgD+7QsO+XV95Pn0PWL4/Laa+QWBjPSqzYT0AAAAAAAAAADMBXT3II7w+tiytvYVFC77jd1A84qNnPAAAAAAAAAAArUNtvmiLybzrjls7mentOVXQLz578X26AACAPwAAgD9mPlK8NFa7P6vsGL6JIEw+82quvNumsb0AAAAAAAAAAAC3B76Jyvg+An+TPuuFdb6x8qU+HkXKPQAAAAAAAAAAgPEAPqai2z5EHjy9ELkmvnhMLz01bHo9AAAAAAAAAACS84K+N7USvZPXaTsC7xQ6yimCPm0smboAAIA/AACAP9poJ77WC80+EFGevSx7Z77j3Hm9TfHjPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIP8Vx4NXuRkCUhpRSlIwBbJRLzYwBdJRHQIVk7asZHd51fZQoaAZoCWgPQwgwLeqT3MxcQJSGlFKUaBVN6ANoFkdAhXG9SEUTMHV9lChoBmgJaA9DCLRWtDnOuVdAlIaUUpRoFU3oA2gWR0CFcr6JqIrOdX2UKGgGaAloD0MIIVuWr8tJX0CUhpRSlGgVTegDaBZHQIVzQizLOiZ1fZQoaAZoCWgPQwhfCaTEroNgQJSGlFKUaBVN6ANoFkdAhXk5j6N2knV9lChoBmgJaA9DCBLeHoSAvP+/lIaUUpRoFUvxaBZHQIV6MQPI4l11fZQoaAZoCWgPQwgMWkjA6KRcQJSGlFKUaBVN6ANoFkdAhXqG4AjptHV9lChoBmgJaA9DCBDpt68D7yLAlIaUUpRoFUvwaBZHQIWjqGWUr091fZQoaAZoCWgPQwgdHVcju6I4QJSGlFKUaBVLyWgWR0CFrKRgZ0jkdX2UKGgGaAloD0MIYB3HD5X0VECUhpRSlGgVTegDaBZHQIW7dSde6Zp1fZQoaAZoCWgPQwi3m+CbpihqQJSGlFKUaBVNRQFoFkdAhcIoxgy/K3V9lChoBmgJaA9DCP1qDhDMUS/AlIaUUpRoFU0jAWgWR0CFz4wzLwF1dX2UKGgGaAloD0MIOUNxx5uNYUCUhpRSlGgVTegDaBZHQIXSAm3OObR1fZQoaAZoCWgPQwiGVFG8ynBiQJSGlFKUaBVN6ANoFkdAhdUfRVp9JHV9lChoBmgJaA9DCJks7j8yH05AlIaUUpRoFU3oA2gWR0CF1xpdrwfAdX2UKGgGaAloD0MILGNDN/s7O0CUhpRSlGgVS9doFkdAhdv158jRlnV9lChoBmgJaA9DCDf6mA8IYltAlIaUUpRoFU3oA2gWR0CF8gyN4qwydX2UKGgGaAloD0MIC0eQSrE9Y0CUhpRSlGgVTegDaBZHQIXy3DgqEvl1fZQoaAZoCWgPQwhF2safqBwhwJSGlFKUaBVN6ANoFkdAhfS9+gDifnV9lChoBmgJaA9DCJ1KBoAqK19AlIaUUpRoFU3oA2gWR0CF+ZD4xk/bdX2UKGgGaAloD0MIglZgyGr5YECUhpRSlGgVTegDaBZHQIX5l43WFvh1fZQoaAZoCWgPQwhIb7iP3BhGQJSGlFKUaBVN6ANoFkdAhg5WHLzPKXV9lChoBmgJaA9DCIguqG+Z8FRAlIaUUpRoFU3oA2gWR0CGD/7yhBZ7dX2UKGgGaAloD0MIuvjbniDRH0CUhpRSlGgVS9ZoFkdAhhoTuv2XcHV9lChoBmgJaA9DCDdwB+qUwlxAlIaUUpRoFU3oA2gWR0CGHWXiR4hVdX2UKGgGaAloD0MIWFhwP+CiWkCUhpRSlGgVTegDaBZHQIYeAjlgc951fZQoaAZoCWgPQwjopPeNrz1gQJSGlFKUaBVN6ANoFkdAhiQRHG0eEXV9lChoBmgJaA9DCD/FceBVl2dAlIaUUpRoFU3xAWgWR0CGXJIYm9g4dX2UKGgGaAloD0MIVmKelbQuVkCUhpRSlGgVTegDaBZHQIZjnMQmNR51fZQoaAZoCWgPQwhAFTduMYcpwJSGlFKUaBVNAwFoFkdAhmirl/6O53V9lChoBmgJaA9DCBXGFoIcgFVAlIaUUpRoFU3oA2gWR0CGeE0SAYpEdX2UKGgGaAloD0MIK702GyvZYECUhpRSlGgVTegDaBZHQIZ64te2NNt1fZQoaAZoCWgPQwgwKqkT0INhQJSGlFKUaBVN6ANoFkdAhn3vluFYdXV9lChoBmgJaA9DCOif4GJF42JAlIaUUpRoFU3oA2gWR0CGf/z1bqyGdX2UKGgGaAloD0MIVRSvsjYMYECUhpRSlGgVTegDaBZHQIaExHNHH3l1fZQoaAZoCWgPQwjx1CMNbjBeQJSGlFKUaBVN6ANoFkdAhpkgUDdP+HV9lChoBmgJaA9DCK0W2GMiq11AlIaUUpRoFU3oA2gWR0CGmuu/1xsEdX2UKGgGaAloD0MIoTGTqBfbUMCUhpRSlGgVS/doFkdAhpunLzPKMnV9lChoBmgJaA9DCK4upwTEJV5AlIaUUpRoFU3oA2gWR0CGn28zyjHodX2UKGgGaAloD0MIBrggW5ZuYECUhpRSlGgVTegDaBZHQIawN2zOX3R1fZQoaAZoCWgPQwg4MLlRZAJWQJSGlFKUaBVN6ANoFkdAhrFQ84gieXV9lChoBmgJaA9DCBWscTada2JAlIaUUpRoFU3oA2gWR0CGuANn5BTodX2UKGgGaAloD0MIWFcFajGOSECUhpRSlGgVTegDaBZHQIa6tlqagEl1fZQoaAZoCWgPQwihuU4jLeFNQJSGlFKUaBVN6ANoFkdAhrtObRWtEHV9lChoBmgJaA9DCBCxwcJJ2iDAlIaUUpRoFUvfaBZHQIb6SMxXXAd1fZQoaAZoCWgPQwjAstKkFM9qQJSGlFKUaBVNBQNoFkdAhv/g3tKIznV9lChoBmgJaA9DCMcuUb01zVxAlIaUUpRoFU3oA2gWR0CHALyvs7dSdX2UKGgGaAloD0MIU0Da/wBbGcCUhpRSlGgVTSgBaBZHQIcB0Pvrnkl1fZQoaAZoCWgPQwjP3EPCd69gQJSGlFKUaBVN6ANoFkdAhwa/uLJjlXV9lChoBmgJaA9DCBNlbylnB2JAlIaUUpRoFU3oA2gWR0CHC0pc5bQkdX2UKGgGaAloD0MIn8cozzzhYkCUhpRSlGgVTegDaBZHQIcb99Sde6Z1fZQoaAZoCWgPQwgdylAVUw1fQJSGlFKUaBVN6ANoFkdAhx87JOnEVHV9lChoBmgJaA9DCBEawcb1xyDAlIaUUpRoFU0hAWgWR0CHIfwx33YddX2UKGgGaAloD0MIg6eQK/XTXUCUhpRSlGgVTegDaBZHQIcmgC0WuYB1fZQoaAZoCWgPQwj9v+rIkc9cQJSGlFKUaBVN6ANoFkdAhz552Qnx8XV9lChoBmgJaA9DCCaPp+UHslxAlIaUUpRoFU3oA2gWR0CHQJtShrWRdX2UKGgGaAloD0MIX7Uy4RfNYECUhpRSlGgVTegDaBZHQIdBhDkU9IR1fZQoaAZoCWgPQwjTM73EWKavv5SGlFKUaBVNEgFoFkdAh0L8qnWJ8HV9lChoBmgJaA9DCEMaFTjZx2dAlIaUUpRoFU3oA2gWR0CHRjKU3XI2dX2UKGgGaAloD0MI3UHsTKFvWUCUhpRSlGgVTegDaBZHQIdiG/pMYdh1fZQoaAZoCWgPQwjj++JSFbZiQJSGlFKUaBVN6ANoFkdAh2SVAzHjqHV9lChoBmgJaA9DCNrKS/6nP2NAlIaUUpRoFU3oA2gWR0CHZQUnG828dX2UKGgGaAloD0MIi/87okIxNcCUhpRSlGgVTQoBaBZHQIdl7TjNpud1fZQoaAZoCWgPQwiBeciUD4tgQJSGlFKUaBVN6ANoFkdAh50e2d/ax3V9lChoBmgJaA9DCGqiz0cZ219AlIaUUpRoFU3oA2gWR0CHow5LAYYSdX2UKGgGaAloD0MIXMtkOB7FYkCUhpRSlGgVTegDaBZHQIelUhNdqtZ1fZQoaAZoCWgPQwiBIatbvVpoQJSGlFKUaBVNDwJoFkdAh6oqzRhMJ3V9lChoBmgJaA9DCB4YQPjQ42FAlIaUUpRoFU3oA2gWR0CHqsieumrKdX2UKGgGaAloD0MIxHx5AXbqYECUhpRSlGgVTegDaBZHQIevk2xY7q91fZQoaAZoCWgPQwh872/Q3pxgQJSGlFKUaBVN6ANoFkdAh8DtayKNynV9lChoBmgJaA9DCNPcCmE1xVVAlIaUUpRoFU3oA2gWR0CHxzqiXY16dX2UKGgGaAloD0MINlZinhVcYECUhpRSlGgVTegDaBZHQIfMD1oQFs51fZQoaAZoCWgPQwg1CHO7l5sCQJSGlFKUaBVNQgFoFkdAh9iZY5ksjHV9lChoBmgJaA9DCBWMSuoEtGFAlIaUUpRoFU3oA2gWR0CH5N60IC2ddX2UKGgGaAloD0MI2spL/ifIW0CUhpRSlGgVTegDaBZHQIfnkK1G9Yh1fZQoaAZoCWgPQwjU00fgDwlPwJSGlFKUaBVNDAFoFkdAh+q0z9CNTHV9lChoBmgJaA9DCMZpiCr8M2FAlIaUUpRoFU3oA2gWR0CH64xzJZGKdX2UKGgGaAloD0MI+WcG8YHMYUCUhpRSlGgVTegDaBZHQIgFjOgQHzJ1fZQoaAZoCWgPQwjLg/QUuWphQJSGlFKUaBVN6ANoFkdAiAfYiX6ZY3V9lChoBmgJaA9DCA9EFmlixmNAlIaUUpRoFU3oA2gWR0CICD26ClJpdX2UKGgGaAloD0MIYaku4GUOVECUhpRSlGgVTegDaBZHQIgJJBu4wyt1fZQoaAZoCWgPQwjGounsZKA5wJSGlFKUaBVNAAFoFkdAiAqtmthd+3V9lChoBmgJaA9DCDEL7Zxm/2FAlIaUUpRoFU3oA2gWR0CIPt5dGAkLdX2UKGgGaAloD0MI647FNilYYkCUhpRSlGgVTegDaBZHQIhEUcOskpt1fZQoaAZoCWgPQwj9vRQetEViQJSGlFKUaBVN6ANoFkdAiEYnEdeY2XV9lChoBmgJaA9DCIeL3NPVlVNAlIaUUpRoFU3oA2gWR0CISloPCl7/dX2UKGgGaAloD0MIdv7tsl9gYUCUhpRSlGgVTegDaBZHQIhK4HE/B311fZQoaAZoCWgPQwicTUcAtx9hQJSGlFKUaBVN6ANoFkdAiF7HEl3QlnV9lChoBmgJaA9DCFTHKqVniV5AlIaUUpRoFU3oA2gWR0CIaPDQZ4wAdX2UKGgGaAloD0MIPe5brROFT0CUhpRSlGgVTegDaBZHQIh0g3YL9dh1fZQoaAZoCWgPQwhKDW0ANhJhQJSGlFKUaBVN6ANoFkdAiH9TER8MNXV9lChoBmgJaA9DCE93nnhOHmNAlIaUUpRoFU3oA2gWR0CIgciDdxhldX2UKGgGaAloD0MIr9FyoIcUYECUhpRSlGgVTegDaBZHQIiE3jKgZjx1fZQoaAZoCWgPQwjqPCr+775cQJSGlFKUaBVN6ANoFkdAiKE5KnNxEXV9lChoBmgJaA9DCHKjyFpDyQfAlIaUUpRoFUvsaBZHQIijTQPZqVR1fZQoaAZoCWgPQwj/d0SF6otgQJSGlFKUaBVN6ANoFkdAiKOyCOFQEnV9lChoBmgJaA9DCFngK7r1ZVdAlIaUUpRoFU3oA2gWR0CIpCRT0g8sdX2UKGgGaAloD0MIVik900svUkCUhpRSlGgVTegDaBZHQIilAPf8/EB1fZQoaAZoCWgPQwjEeM2rOtlfQJSGlFKUaBVN6ANoFkdAiKZ62fChvnV9lChoBmgJaA9DCK6ek963RmZAlIaUUpRoFU3oA2gWR0CItHilSCOFdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 124,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6166b3931449577f3012fd13d774ed8f5cf3c28a1003630318e882473199ff4
3
+ size 87865
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3132a7e42dffe1e466ad1991c7c919a4967b8597b1353f61a30f9a8e05559163
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.7.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (230 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 231.12857537809796, "std_reward": 16.802599804212633, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-10-24T14:49:19.784729"}