Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,70 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model:
|
4 |
+
- mistralai/Pixtral-12B-2409
|
5 |
+
library_name: transformers
|
6 |
+
---
|
7 |
+
# Pixtral-12B Vision Encoder
|
8 |
+
|
9 |
+
## Model Overview
|
10 |
+
This repository provides direct access to the vision encoder module extracted from the Pixtral-12B multimodal model. By isolating the vision encoder, we enable researchers and developers to leverage the powerful visual feature extraction capabilities for downstream vision tasks.
|
11 |
+
|
12 |
+
## Key Features
|
13 |
+
- **Standalone Vision Encoder**: Extracted from the full Pixtral-12B model
|
14 |
+
- **Lightweight Architecture**: Optimized 400M parameter vision encoder
|
15 |
+
- **Flexible Usage**: Easily integrated into various computer vision pipelines
|
16 |
+
- **No Unnecessary Decoder Weights**: Trimmed for efficient vision-specific applications
|
17 |
+
|
18 |
+
## Motivation
|
19 |
+
The Pixtral-12B Vision Encoder module is designed for researchers and developers who:
|
20 |
+
- Require high-quality visual feature extraction
|
21 |
+
- Want to use the vision encoder independently of the full multimodal model
|
22 |
+
- Seek to implement custom downstream vision tasks
|
23 |
+
- Desire a lightweight, efficient vision representation module
|
24 |
+
|
25 |
+
## Installation
|
26 |
+
```python
|
27 |
+
from transformers import AutoModel
|
28 |
+
import torch
|
29 |
+
|
30 |
+
# Load the vision encoder
|
31 |
+
vision_encoder = AutoModel.from_pretrained("your-repository/pixtral-12b-vision-encoder")
|
32 |
+
```
|
33 |
+
|
34 |
+
## Example Usage
|
35 |
+
```python
|
36 |
+
from PIL import Image
|
37 |
+
import torch
|
38 |
+
|
39 |
+
# Load an image
|
40 |
+
image = Image.open("example_image.jpg")
|
41 |
+
|
42 |
+
# Preprocess the image (ensure to use the corresponding processor)
|
43 |
+
inputs = vision_processor(images=image, return_tensors="pt")
|
44 |
+
|
45 |
+
# Extract visual features
|
46 |
+
with torch.no_grad():
|
47 |
+
visual_embeddings = vision_encoder(**inputs).last_hidden_state
|
48 |
+
|
49 |
+
# Now you can use visual_embeddings for downstream tasks
|
50 |
+
```
|
51 |
+
|
52 |
+
## Capabilities
|
53 |
+
- High-quality visual feature extraction
|
54 |
+
- Support for various image sizes
|
55 |
+
- Robust representation learning
|
56 |
+
- Compatible with multiple vision downstream tasks
|
57 |
+
|
58 |
+
## Limitations
|
59 |
+
- Designed specifically for feature extraction
|
60 |
+
- Performance may vary depending on the specific downstream task
|
61 |
+
- Requires careful preprocessing and task-specific fine-tuning
|
62 |
+
|
63 |
+
## Acknowledgements
|
64 |
+
Special thanks to the Mistral AI team for developing the original Pixtral-12B multimodal model.
|
65 |
+
|
66 |
+
## License
|
67 |
+
Distributed under the Apache 2.0 License.
|
68 |
+
|
69 |
+
## Citation
|
70 |
+
If you use this vision encoder in your research, please cite the original Mistral AI Pixtral-12B model.
|