Prarabdha commited on
Commit
8edea7c
1 Parent(s): efa99e6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -3
README.md CHANGED
@@ -1,3 +1,70 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model:
4
+ - mistralai/Pixtral-12B-2409
5
+ library_name: transformers
6
+ ---
7
+ # Pixtral-12B Vision Encoder
8
+
9
+ ## Model Overview
10
+ This repository provides direct access to the vision encoder module extracted from the Pixtral-12B multimodal model. By isolating the vision encoder, we enable researchers and developers to leverage the powerful visual feature extraction capabilities for downstream vision tasks.
11
+
12
+ ## Key Features
13
+ - **Standalone Vision Encoder**: Extracted from the full Pixtral-12B model
14
+ - **Lightweight Architecture**: Optimized 400M parameter vision encoder
15
+ - **Flexible Usage**: Easily integrated into various computer vision pipelines
16
+ - **No Unnecessary Decoder Weights**: Trimmed for efficient vision-specific applications
17
+
18
+ ## Motivation
19
+ The Pixtral-12B Vision Encoder module is designed for researchers and developers who:
20
+ - Require high-quality visual feature extraction
21
+ - Want to use the vision encoder independently of the full multimodal model
22
+ - Seek to implement custom downstream vision tasks
23
+ - Desire a lightweight, efficient vision representation module
24
+
25
+ ## Installation
26
+ ```python
27
+ from transformers import AutoModel
28
+ import torch
29
+
30
+ # Load the vision encoder
31
+ vision_encoder = AutoModel.from_pretrained("your-repository/pixtral-12b-vision-encoder")
32
+ ```
33
+
34
+ ## Example Usage
35
+ ```python
36
+ from PIL import Image
37
+ import torch
38
+
39
+ # Load an image
40
+ image = Image.open("example_image.jpg")
41
+
42
+ # Preprocess the image (ensure to use the corresponding processor)
43
+ inputs = vision_processor(images=image, return_tensors="pt")
44
+
45
+ # Extract visual features
46
+ with torch.no_grad():
47
+ visual_embeddings = vision_encoder(**inputs).last_hidden_state
48
+
49
+ # Now you can use visual_embeddings for downstream tasks
50
+ ```
51
+
52
+ ## Capabilities
53
+ - High-quality visual feature extraction
54
+ - Support for various image sizes
55
+ - Robust representation learning
56
+ - Compatible with multiple vision downstream tasks
57
+
58
+ ## Limitations
59
+ - Designed specifically for feature extraction
60
+ - Performance may vary depending on the specific downstream task
61
+ - Requires careful preprocessing and task-specific fine-tuning
62
+
63
+ ## Acknowledgements
64
+ Special thanks to the Mistral AI team for developing the original Pixtral-12B multimodal model.
65
+
66
+ ## License
67
+ Distributed under the Apache 2.0 License.
68
+
69
+ ## Citation
70
+ If you use this vision encoder in your research, please cite the original Mistral AI Pixtral-12B model.