|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch Bamboo model.""" |
|
import torch |
|
import inspect |
|
import math |
|
import warnings |
|
from typing import List, Optional, Tuple, Union |
|
from dataclasses import dataclass |
|
from typing import List, Optional, Tuple, Union |
|
|
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
|
|
from transformers.activations import ACT2FN |
|
|
|
from transformers.cache_utils import Cache, DynamicCache |
|
from transformers.activations import ACT2FN |
|
|
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast,MoeModelOutputWithPast,MoeCausalLMOutputWithPast,TokenClassifierOutput |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.pytorch_utils import ( |
|
is_torch_greater_or_equal_than_1_13 |
|
) |
|
|
|
from transformers.utils import ( |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
is_flash_attn_2_available, |
|
is_flash_attn_greater_or_equal_2_10, |
|
logging, |
|
replace_return_docstrings, |
|
is_torch_fx_available, |
|
) |
|
from .configuration_turbosparsemixtral import TurboSparseMixtralConfig |
|
@dataclass |
|
class AttentionMaskConverter: |
|
""" |
|
A utility attention mask class that allows one to: |
|
- Create a causal 4d mask |
|
- Create a causal 4d mask with slided window |
|
- Convert a 2d attention mask (batch_size, query_length) to a 4d attention mask (batch_size, 1, query_length, |
|
key_value_length) that can be multiplied with attention scores |
|
Examples: |
|
```python |
|
>>> import torch |
|
>>> from transformers.modeling_attn_mask_utils import AttentionMaskConverter |
|
>>> converter = AttentionMaskConverter(True) |
|
>>> converter.to_4d(torch.tensor([[0, 0, 0, 1, 1]]), 5, key_value_length=5, dtype=torch.float32) |
|
tensor([[[[-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38], |
|
[-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38], |
|
[-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38], |
|
[-3.4028e+38, -3.4028e+38, -3.4028e+38, 0.0000e+00, -3.4028e+38], |
|
[-3.4028e+38, -3.4028e+38, -3.4028e+38, 0.0000e+00, 0.0000e+00]]]]) |
|
``` |
|
Parameters: |
|
is_causal (`bool`): |
|
Whether the attention mask should be a uni-directional (causal) or bi-directional mask. |
|
sliding_window (`int`, *optional*): |
|
Optionally, the sliding window masks can be created if `sliding_window` is defined to a positive integer. |
|
""" |
|
|
|
is_causal: bool |
|
sliding_window: int |
|
|
|
def __init__(self, is_causal: bool, sliding_window: Optional[int] = None): |
|
self.is_causal = is_causal |
|
self.sliding_window = sliding_window |
|
|
|
if self.sliding_window is not None and self.sliding_window <= 0: |
|
raise ValueError( |
|
f"Make sure that when passing `sliding_window` that its value is a strictly positive integer, not `{self.sliding_window}`" |
|
) |
|
|
|
def to_causal_4d( |
|
self, |
|
batch_size: int, |
|
query_length: int, |
|
key_value_length: int, |
|
dtype: torch.dtype, |
|
device: Union[torch.device, "str"] = "cpu", |
|
) -> Optional[torch.Tensor]: |
|
""" |
|
Creates a causal 4D mask of (bsz, head_dim=1, query_length, key_value_length) shape and adds large negative |
|
bias to upper right hand triangular matrix (causal mask). |
|
""" |
|
if not self.is_causal: |
|
raise ValueError(f"Please use `to_causal_4d` only if {self.__class__} has `is_causal` set to True.") |
|
|
|
|
|
input_shape = (batch_size, query_length) |
|
past_key_values_length = key_value_length - query_length |
|
|
|
|
|
|
|
causal_4d_mask = None |
|
if input_shape[-1] > 1 or self.sliding_window is not None: |
|
causal_4d_mask = self._make_causal_mask( |
|
input_shape, |
|
dtype, |
|
device=device, |
|
past_key_values_length=past_key_values_length, |
|
sliding_window=self.sliding_window, |
|
) |
|
|
|
return causal_4d_mask |
|
|
|
def to_4d( |
|
self, |
|
attention_mask_2d: torch.Tensor, |
|
query_length: int, |
|
dtype: torch.dtype, |
|
key_value_length: Optional[int] = None, |
|
) -> torch.Tensor: |
|
""" |
|
Converts 2D attention mask to 4D attention mask by expanding mask to (bsz, head_dim=1, query_length, |
|
key_value_length) shape and by adding a large negative bias to not-attended positions. If attention_mask is |
|
causal, a causal mask will be added. |
|
""" |
|
input_shape = (attention_mask_2d.shape[0], query_length) |
|
|
|
|
|
|
|
causal_4d_mask = None |
|
if (input_shape[-1] > 1 or self.sliding_window is not None) and self.is_causal: |
|
if key_value_length is None: |
|
raise ValueError( |
|
"This attention mask converter is causal. Make sure to pass `key_value_length` to correctly create a causal mask." |
|
) |
|
|
|
past_key_values_length = key_value_length - query_length |
|
causal_4d_mask = self._make_causal_mask( |
|
input_shape, |
|
dtype, |
|
device=attention_mask_2d.device, |
|
past_key_values_length=past_key_values_length, |
|
sliding_window=self.sliding_window, |
|
) |
|
elif self.sliding_window is not None: |
|
raise NotImplementedError("Sliding window is currently only implemented for causal masking") |
|
|
|
|
|
expanded_attn_mask = self._expand_mask(attention_mask_2d, dtype, tgt_len=input_shape[-1]).to( |
|
attention_mask_2d.device |
|
) |
|
|
|
if causal_4d_mask is not None: |
|
expanded_attn_mask = causal_4d_mask.masked_fill(expanded_attn_mask.bool(), torch.finfo(dtype).min) |
|
|
|
|
|
expanded_4d_mask = expanded_attn_mask |
|
|
|
return expanded_4d_mask |
|
|
|
@staticmethod |
|
def _make_causal_mask( |
|
input_ids_shape: torch.Size, |
|
dtype: torch.dtype, |
|
device: torch.device, |
|
past_key_values_length: int = 0, |
|
sliding_window: Optional[int] = None, |
|
): |
|
""" |
|
Make causal mask used for bi-directional self-attention. |
|
""" |
|
bsz, tgt_len = input_ids_shape |
|
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device) |
|
mask_cond = torch.arange(mask.size(-1), device=device) |
|
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) |
|
|
|
mask = mask.to(dtype) |
|
|
|
if past_key_values_length > 0: |
|
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) |
|
|
|
|
|
if sliding_window is not None: |
|
diagonal = past_key_values_length - sliding_window + 1 |
|
|
|
context_mask = 1 - torch.triu(torch.ones_like(mask, dtype=torch.int), diagonal=diagonal) |
|
mask.masked_fill_(context_mask.bool(), torch.finfo(dtype).min) |
|
|
|
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) |
|
|
|
@staticmethod |
|
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): |
|
""" |
|
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. |
|
""" |
|
bsz, src_len = mask.size() |
|
tgt_len = tgt_len if tgt_len is not None else src_len |
|
|
|
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) |
|
|
|
inverted_mask = 1.0 - expanded_mask |
|
|
|
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) |
|
|
|
@staticmethod |
|
def _unmask_unattended( |
|
expanded_mask: torch.Tensor, attention_mask: torch.Tensor, unmasked_value: Union[bool, float] |
|
): |
|
|
|
""" |
|
Attend to all tokens in masked rows from the expanded attention mask, for example the relevant first rows when |
|
using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. |
|
Details: https://github.com/pytorch/pytorch/issues/110213 |
|
`expanded_mask` is [bsz, num_masks, tgt_seq_len, src_seq_len] or [bsz, tgt_seq_len, src_seq_len]. |
|
`attention_mask` is [bsz, src_seq_len]. |
|
The dimension num_masks of `expanded_mask` is most often 1, but it can also be the number of heads in the case of alibi attention bias. |
|
For example, if `attention_mask` is |
|
``` |
|
[[0, 0, 1], |
|
[1, 1, 1], |
|
[0, 1, 1]] |
|
``` |
|
and `expanded_mask` is (e.g. here left-padding case) |
|
``` |
|
[[[[0, 0, 0], |
|
[0, 0, 0], |
|
[0, 0, 1]]], |
|
[[[1, 0, 0], |
|
[1, 1, 0], |
|
[1, 1, 1]]], |
|
[[[0, 0, 0], |
|
[0, 1, 0], |
|
[0, 1, 1]]]] |
|
``` |
|
then the modified `expanded_mask` will be |
|
``` |
|
[[[[1, 1, 1], <-- modified |
|
[1, 1, 1], <-- modified |
|
[0, 0, 1]]], |
|
[[[1, 0, 0], |
|
[1, 1, 0], |
|
[1, 1, 1]]], |
|
[[[1, 1, 1], <-- modified |
|
[0, 1, 0], |
|
[0, 1, 1]]]] |
|
``` |
|
""" |
|
|
|
|
|
|
|
|
|
tmp = torch.arange(attention_mask.shape[1], 0, -1) |
|
indices = torch.argmax(attention_mask.cpu() * tmp, 1, keepdim=True) |
|
|
|
|
|
|
|
left_masked_rows = torch.where(indices > 0)[0] |
|
|
|
if left_masked_rows.shape[0] == 0: |
|
return expanded_mask |
|
indices = indices[left_masked_rows] |
|
|
|
max_len = torch.max(indices) |
|
range_tensor = torch.arange(max_len).unsqueeze(0) |
|
range_tensor = range_tensor.repeat(indices.size(0), 1) |
|
|
|
|
|
range_tensor[range_tensor >= indices] = 0 |
|
|
|
|
|
if expanded_mask.dim() == 4: |
|
num_masks = expanded_mask.shape[1] |
|
if num_masks == 1: |
|
|
|
mask_slice = (left_masked_rows[:, None], 0, range_tensor) |
|
else: |
|
|
|
mask_slice = ( |
|
left_masked_rows[:, None, None], |
|
torch.arange(num_masks)[None, :, None], |
|
range_tensor[:, None, :], |
|
) |
|
else: |
|
|
|
mask_slice = (left_masked_rows[:, None], range_tensor) |
|
|
|
expanded_mask[mask_slice] = unmasked_value |
|
|
|
return expanded_mask |
|
|
|
|
|
def _prepare_4d_causal_attention_mask( |
|
attention_mask: Optional[torch.Tensor], |
|
input_shape: Union[torch.Size, Tuple, List], |
|
inputs_embeds: torch.Tensor, |
|
past_key_values_length: int, |
|
sliding_window: Optional[int] = None, |
|
): |
|
""" |
|
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape |
|
`(batch_size, key_value_length)` |
|
Args: |
|
attention_mask (`torch.Tensor` or `None`): |
|
A 2D attention mask of shape `(batch_size, key_value_length)` |
|
input_shape (`tuple(int)` or `list(int)` or `torch.Size`): |
|
The input shape should be a tuple that defines `(batch_size, query_length)`. |
|
inputs_embeds (`torch.Tensor`): |
|
The embedded inputs as a torch Tensor. |
|
past_key_values_length (`int`): |
|
The length of the key value cache. |
|
sliding_window (`int`, *optional*): |
|
If the model uses windowed attention, a sliding window should be passed. |
|
""" |
|
attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window) |
|
|
|
key_value_length = input_shape[-1] + past_key_values_length |
|
|
|
|
|
if attention_mask is not None and len(attention_mask.shape) == 2: |
|
attention_mask = attn_mask_converter.to_4d( |
|
attention_mask, input_shape[-1], key_value_length=key_value_length, dtype=inputs_embeds.dtype |
|
) |
|
elif attention_mask is not None and len(attention_mask.shape) == 4: |
|
expected_shape = (input_shape[0], 1, input_shape[1], key_value_length) |
|
if tuple(attention_mask.shape) != expected_shape: |
|
raise ValueError( |
|
f"Incorrect 4D attention_mask shape: {tuple(attention_mask.shape)}; expected: {expected_shape}." |
|
) |
|
else: |
|
|
|
inverted_mask = 1.0 - attention_mask |
|
attention_mask = inverted_mask.masked_fill( |
|
inverted_mask.to(torch.bool), torch.finfo(inputs_embeds.dtype).min |
|
) |
|
else: |
|
attention_mask = attn_mask_converter.to_causal_4d( |
|
input_shape[0], input_shape[-1], key_value_length, dtype=inputs_embeds.dtype, device=inputs_embeds.device |
|
) |
|
|
|
return attention_mask |
|
|
|
|
|
|
|
def _prepare_4d_causal_attention_mask_for_sdpa( |
|
attention_mask: Optional[torch.Tensor], |
|
input_shape: Union[torch.Size, Tuple, List], |
|
inputs_embeds: torch.Tensor, |
|
past_key_values_length: int, |
|
sliding_window: Optional[int] = None, |
|
): |
|
""" |
|
Prepares the correct `attn_mask` argument to be used by `torch.nn.functional.scaled_dot_product_attention`. |
|
In case no token is masked in the `attention_mask` argument, we simply set it to `None` for the cases `query_length == 1` and |
|
`key_value_length == query_length`, and rely instead on SDPA `is_causal` argument to use causal/non-causal masks, |
|
allowing to dispatch to the flash attention kernel (that can otherwise not be used if a custom `attn_mask` is passed). |
|
""" |
|
attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window) |
|
|
|
key_value_length = input_shape[-1] + past_key_values_length |
|
batch_size, query_length = input_shape |
|
|
|
|
|
|
|
|
|
is_tracing = torch.jit.is_tracing() or isinstance(inputs_embeds, torch.fx.Proxy) |
|
|
|
if attention_mask is not None: |
|
|
|
if len(attention_mask.shape) == 4: |
|
expected_shape = (input_shape[0], 1, input_shape[1], key_value_length) |
|
if tuple(attention_mask.shape) != expected_shape: |
|
raise ValueError( |
|
f"Incorrect 4D attention_mask shape: {tuple(attention_mask.shape)}; expected: {expected_shape}." |
|
) |
|
else: |
|
|
|
inverted_mask = 1.0 - attention_mask.to(inputs_embeds.dtype) |
|
attention_mask = inverted_mask.masked_fill( |
|
inverted_mask.to(torch.bool), torch.finfo(inputs_embeds.dtype).min |
|
) |
|
return attention_mask |
|
|
|
elif not is_tracing and torch.all(attention_mask == 1): |
|
if query_length == 1: |
|
|
|
attention_mask = None |
|
elif key_value_length == query_length: |
|
attention_mask = None |
|
else: |
|
|
|
|
|
|
|
pass |
|
elif query_length > 1 and key_value_length != query_length: |
|
|
|
|
|
attention_mask = True |
|
elif is_tracing: |
|
raise ValueError( |
|
'Attention using SDPA can not be traced with torch.jit.trace when no attention_mask is provided. To solve this issue, please either load your model with the argument `attn_implementation="eager"` or pass an attention_mask input when tracing the model.' |
|
) |
|
|
|
if attention_mask is None: |
|
expanded_4d_mask = None |
|
elif attention_mask is True: |
|
expanded_4d_mask = attn_mask_converter.to_causal_4d( |
|
input_shape[0], input_shape[-1], key_value_length, dtype=inputs_embeds.dtype, device=inputs_embeds.device |
|
) |
|
else: |
|
expanded_4d_mask = attn_mask_converter.to_4d( |
|
attention_mask, |
|
input_shape[-1], |
|
dtype=inputs_embeds.dtype, |
|
key_value_length=key_value_length, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if query_length > 1 and not is_tracing: |
|
expanded_4d_mask = AttentionMaskConverter._unmask_unattended( |
|
expanded_4d_mask, attention_mask, unmasked_value=0.0 |
|
) |
|
|
|
return expanded_4d_mask |
|
|
|
|
|
def _prepare_4d_attention_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): |
|
""" |
|
Creates a non-causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape |
|
`(batch_size, key_value_length)` |
|
Args: |
|
mask (`torch.Tensor` or `None`): |
|
A 2D attention mask of shape `(batch_size, key_value_length)` |
|
dtype (`torch.dtype`): |
|
The torch dtype the created mask shall have. |
|
tgt_len (`int`): |
|
The target length or query length the created mask shall have. |
|
""" |
|
return AttentionMaskConverter._expand_mask(mask=mask, dtype=dtype, tgt_len=tgt_len) |
|
|
|
|
|
def _prepare_4d_attention_mask_for_sdpa(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): |
|
""" |
|
Creates a non-causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape |
|
`(batch_size, key_value_length)` |
|
Args: |
|
mask (`torch.Tensor` or `None`): |
|
A 2D attention mask of shape `(batch_size, key_value_length)` |
|
dtype (`torch.dtype`): |
|
The torch dtype the created mask shall have. |
|
tgt_len (`int`): |
|
The target length or query length the created mask shall have. |
|
""" |
|
batch_size, key_value_length = mask.shape |
|
tgt_len = tgt_len if tgt_len is not None else key_value_length |
|
|
|
|
|
|
|
|
|
is_tracing = torch.jit.is_tracing() |
|
|
|
if torch.all(mask == 1): |
|
if is_tracing: |
|
pass |
|
elif tgt_len == 1: |
|
|
|
return None |
|
elif key_value_length == tgt_len: |
|
return None |
|
else: |
|
|
|
|
|
|
|
return AttentionMaskConverter._expand_mask(mask=mask, dtype=dtype, tgt_len=tgt_len) |
|
else: |
|
return AttentionMaskConverter._expand_mask(mask=mask, dtype=dtype, tgt_len=tgt_len) |
|
|
|
|
|
def _create_4d_causal_attention_mask( |
|
input_shape: Union[torch.Size, Tuple, List], |
|
dtype: torch.dtype, |
|
device: torch.device, |
|
past_key_values_length: int = 0, |
|
sliding_window: Optional[int] = None, |
|
) -> Optional[torch.Tensor]: |
|
""" |
|
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` |
|
Args: |
|
input_shape (`tuple(int)` or `list(int)` or `torch.Size`): |
|
The input shape should be a tuple that defines `(batch_size, query_length)`. |
|
dtype (`torch.dtype`): |
|
The torch dtype the created mask shall have. |
|
device (`int`): |
|
The torch device the created mask shall have. |
|
sliding_window (`int`, *optional*): |
|
If the model uses windowed attention, a sliding window should be passed. |
|
""" |
|
attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window) |
|
|
|
key_value_length = past_key_values_length + input_shape[-1] |
|
attention_mask = attn_mask_converter.to_causal_4d( |
|
input_shape[0], input_shape[-1], key_value_length, dtype=dtype, device=device |
|
) |
|
|
|
return attention_mask |
|
|
|
if is_flash_attn_2_available(): |
|
from flash_attn import flash_attn_func, flash_attn_varlen_func |
|
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input |
|
|
|
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters) |
|
|
|
|
|
|
|
if is_torch_fx_available(): |
|
if not is_torch_greater_or_equal_than_1_13: |
|
import torch.fx |
|
|
|
_prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask) |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = "TurboSparseMixtralConfig" |
|
|
|
|
|
def load_balancing_loss_func( |
|
gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2, attention_mask: Optional[torch.Tensor] = None |
|
) -> float: |
|
r""" |
|
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. |
|
|
|
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss |
|
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between |
|
experts is too unbalanced. |
|
|
|
Args: |
|
gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]): |
|
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of |
|
shape [batch_size X sequence_length, num_experts]. |
|
attention_mask (`torch.Tensor`, None): |
|
The attention_mask used in forward function |
|
shape [batch_size X sequence_length] if not None. |
|
num_experts (`int`, *optional*): |
|
Number of experts |
|
|
|
Returns: |
|
The auxiliary loss. |
|
""" |
|
if gate_logits is None or not isinstance(gate_logits, tuple): |
|
return 0 |
|
|
|
if isinstance(gate_logits, tuple): |
|
compute_device = gate_logits[0].device |
|
concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0) |
|
|
|
routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1) |
|
|
|
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1) |
|
|
|
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts) |
|
|
|
if attention_mask is None: |
|
|
|
tokens_per_expert = torch.mean(expert_mask.float(), dim=0) |
|
|
|
|
|
router_prob_per_expert = torch.mean(routing_weights, dim=0) |
|
else: |
|
batch_size, sequence_length = attention_mask.shape |
|
num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length) |
|
|
|
|
|
expert_attention_mask = ( |
|
attention_mask[None, :, :, None, None] |
|
.expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts)) |
|
.reshape(-1, top_k, num_experts) |
|
.to(compute_device) |
|
) |
|
|
|
|
|
tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum( |
|
expert_attention_mask, dim=0 |
|
) |
|
|
|
|
|
router_per_expert_attention_mask = ( |
|
attention_mask[None, :, :, None] |
|
.expand((num_hidden_layers, batch_size, sequence_length, num_experts)) |
|
.reshape(-1, num_experts) |
|
.to(compute_device) |
|
) |
|
|
|
|
|
router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum( |
|
router_per_expert_attention_mask, dim=0 |
|
) |
|
|
|
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0)) |
|
return overall_loss * num_experts |
|
|
|
|
|
|
|
def _get_unpad_data(attention_mask): |
|
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) |
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() |
|
max_seqlen_in_batch = seqlens_in_batch.max().item() |
|
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) |
|
return ( |
|
indices, |
|
cu_seqlens, |
|
max_seqlen_in_batch, |
|
) |
|
|
|
|
|
|
|
class TurboSparseMixtralRMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
MixtralRMSNorm is equivalent to T5LayerNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
|
|
|
|
|
|
class TurboSparseMixtralRotaryEmbedding(nn.Module): |
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): |
|
super().__init__() |
|
|
|
self.dim = dim |
|
self.max_position_embeddings = max_position_embeddings |
|
self.base = base |
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
|
|
self._set_cos_sin_cache( |
|
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() |
|
) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) |
|
|
|
freqs = torch.outer(t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) |
|
|
|
def forward(self, x, seq_len=None): |
|
|
|
if seq_len > self.max_seq_len_cached: |
|
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) |
|
|
|
return ( |
|
self.cos_cached[:seq_len].to(dtype=x.dtype), |
|
self.sin_cached[:seq_len].to(dtype=x.dtype), |
|
) |
|
|
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): |
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
Args: |
|
q (`torch.Tensor`): The query tensor. |
|
k (`torch.Tensor`): The key tensor. |
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
position_ids (`torch.Tensor`): |
|
The position indices of the tokens corresponding to the query and key tensors. For example, this can be |
|
used to pass offsetted position ids when working with a KV-cache. |
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
Returns: |
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
""" |
|
cos = cos[position_ids].unsqueeze(unsqueeze_dim) |
|
sin = sin[position_ids].unsqueeze(unsqueeze_dim) |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
return q_embed, k_embed |
|
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
""" |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
|
|
|
|
class TurboSparseMixtralAttention(nn.Module): |
|
""" |
|
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer |
|
and "Generating Long Sequences with Sparse Transformers". |
|
""" |
|
|
|
def __init__(self, config: TurboSparseMixtralConfig, layer_idx: Optional[int] = None): |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
if layer_idx is None: |
|
logger.warning_once( |
|
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " |
|
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " |
|
"when creating this class." |
|
) |
|
|
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.num_key_value_heads = config.num_key_value_heads |
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.rope_theta = config.rope_theta |
|
self.is_causal = True |
|
self.attention_dropout = config.attention_dropout |
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size: |
|
raise ValueError( |
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" |
|
f" and `num_heads`: {self.num_heads})." |
|
) |
|
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) |
|
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) |
|
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) |
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) |
|
|
|
self.rotary_emb = TurboSparseMixtralRotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.max_position_embeddings, |
|
base=self.rope_theta, |
|
) |
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
if self.layer_idx is None: |
|
raise ValueError( |
|
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " |
|
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " |
|
"with a layer index." |
|
) |
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) |
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) |
|
|
|
if past_key_value is not None: |
|
cache_kwargs = {"sin": sin, "cos": cos} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) |
|
|
|
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" |
|
f" {attn_weights.size()}" |
|
) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" |
|
) |
|
|
|
attn_weights = attn_weights + attention_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) |
|
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" |
|
f" {attn_output.size()}" |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) |
|
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
|
|
|
|
class TurboSparseMixtralFlashAttention2(TurboSparseMixtralAttention): |
|
""" |
|
Mixtral flash attention module. This module inherits from `MixtralAttention` as the weights of the module stays |
|
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of |
|
flash attention and deal with padding tokens in case the input contains any of them. |
|
""" |
|
|
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
|
|
|
|
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
): |
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
if self.layer_idx is None: |
|
raise ValueError( |
|
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " |
|
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " |
|
"with a layer index." |
|
) |
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) |
|
|
|
|
|
rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1 |
|
cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len) |
|
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) |
|
|
|
use_sliding_windows = ( |
|
_flash_supports_window_size |
|
and getattr(self.config, "sliding_window", None) is not None |
|
and kv_seq_len > self.config.sliding_window |
|
) |
|
|
|
if not _flash_supports_window_size: |
|
logger.warning_once( |
|
"The current flash attention version does not support sliding window attention, for a more memory efficient implementation" |
|
" make sure to upgrade flash-attn library." |
|
) |
|
|
|
if past_key_value is not None: |
|
|
|
cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0 |
|
if ( |
|
getattr(self.config, "sliding_window", None) is not None |
|
and kv_seq_len > self.config.sliding_window |
|
and cache_has_contents |
|
): |
|
slicing_tokens = 1 - self.config.sliding_window |
|
|
|
past_key = past_key_value[self.layer_idx][0] |
|
past_value = past_key_value[self.layer_idx][1] |
|
|
|
past_key = past_key[:, :, slicing_tokens:, :].contiguous() |
|
past_value = past_value[:, :, slicing_tokens:, :].contiguous() |
|
|
|
if past_key.shape[-2] != self.config.sliding_window - 1: |
|
raise ValueError( |
|
f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got" |
|
f" {past_key.shape}" |
|
) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attention_mask[:, slicing_tokens:] |
|
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1) |
|
|
|
cache_kwargs = {"sin": sin, "cos": cos} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
dropout_rate = 0.0 if not self.training else self.attention_dropout |
|
|
|
|
|
|
|
|
|
input_dtype = query_states.dtype |
|
if input_dtype == torch.float32: |
|
if torch.is_autocast_enabled(): |
|
target_dtype = torch.get_autocast_gpu_dtype() |
|
|
|
elif hasattr(self.config, "_pre_quantization_dtype"): |
|
target_dtype = self.config._pre_quantization_dtype |
|
else: |
|
target_dtype = self.q_proj.weight.dtype |
|
|
|
logger.warning_once( |
|
f"The input hidden states seems to be silently casted in float32, this might be related to" |
|
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" |
|
f" {target_dtype}." |
|
) |
|
|
|
query_states = query_states.to(target_dtype) |
|
key_states = key_states.to(target_dtype) |
|
value_states = value_states.to(target_dtype) |
|
|
|
|
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
|
|
attn_output = self._flash_attention_forward( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask, |
|
q_len, |
|
dropout=dropout_rate, |
|
use_sliding_windows=use_sliding_windows, |
|
) |
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() |
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
def _flash_attention_forward( |
|
self, |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask, |
|
query_length, |
|
dropout=0.0, |
|
softmax_scale=None, |
|
use_sliding_windows=False, |
|
): |
|
""" |
|
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token |
|
first unpad the input, then computes the attention scores and pad the final attention scores. |
|
|
|
Args: |
|
query_states (`torch.Tensor`): |
|
Input query states to be passed to Flash Attention API |
|
key_states (`torch.Tensor`): |
|
Input key states to be passed to Flash Attention API |
|
value_states (`torch.Tensor`): |
|
Input value states to be passed to Flash Attention API |
|
attention_mask (`torch.Tensor`): |
|
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the |
|
position of padding tokens and 1 for the position of non-padding tokens. |
|
dropout (`float`): |
|
Attention dropout |
|
softmax_scale (`float`, *optional*): |
|
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) |
|
use_sliding_windows (`bool *optional*): |
|
Whether to activate sliding window attention. |
|
""" |
|
if not self._flash_attn_uses_top_left_mask: |
|
causal = self.is_causal |
|
else: |
|
|
|
causal = self.is_causal and query_length != 1 |
|
|
|
|
|
if attention_mask is not None: |
|
batch_size = query_states.shape[0] |
|
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( |
|
query_states, key_states, value_states, attention_mask, query_length |
|
) |
|
|
|
cu_seqlens_q, cu_seqlens_k = cu_seq_lens |
|
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens |
|
|
|
if not use_sliding_windows: |
|
attn_output_unpad = flash_attn_varlen_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
cu_seqlens_q=cu_seqlens_q, |
|
cu_seqlens_k=cu_seqlens_k, |
|
max_seqlen_q=max_seqlen_in_batch_q, |
|
max_seqlen_k=max_seqlen_in_batch_k, |
|
dropout_p=dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
) |
|
else: |
|
attn_output_unpad = flash_attn_varlen_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
cu_seqlens_q=cu_seqlens_q, |
|
cu_seqlens_k=cu_seqlens_k, |
|
max_seqlen_q=max_seqlen_in_batch_q, |
|
max_seqlen_k=max_seqlen_in_batch_k, |
|
dropout_p=dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
window_size=(self.config.sliding_window, self.config.sliding_window), |
|
) |
|
|
|
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) |
|
else: |
|
if not use_sliding_windows: |
|
attn_output = flash_attn_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
) |
|
else: |
|
attn_output = flash_attn_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
window_size=(self.config.sliding_window, self.config.sliding_window), |
|
) |
|
|
|
return attn_output |
|
|
|
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): |
|
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape |
|
|
|
|
|
|
|
if kv_seq_len != attention_mask.shape[-1]: |
|
attention_mask_num_tokens = attention_mask.shape[-1] |
|
attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :] |
|
|
|
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) |
|
|
|
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) |
|
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) |
|
|
|
if query_length == kv_seq_len: |
|
query_layer = index_first_axis( |
|
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k |
|
) |
|
cu_seqlens_q = cu_seqlens_k |
|
max_seqlen_in_batch_q = max_seqlen_in_batch_k |
|
indices_q = indices_k |
|
elif query_length == 1: |
|
macu_seqlens_q = torch.arange( |
|
batch_size + 1, dtype=torch.int32, device=query_layer.device |
|
) |
|
indices_q = cu_seqlens_q[:-1] |
|
query_layer = query_layer.squeeze(1) |
|
else: |
|
|
|
attention_mask = attention_mask[:, -query_length:] |
|
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) |
|
|
|
return ( |
|
query_layer, |
|
key_layer, |
|
value_layer, |
|
indices_q, |
|
(cu_seqlens_q, cu_seqlens_k), |
|
(max_seqlen_in_batch_q, max_seqlen_in_batch_k), |
|
) |
|
|
|
|
|
|
|
|
|
class TurboSparseMixtralSdpaAttention(TurboSparseMixtralAttention): |
|
""" |
|
Mixtral attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from |
|
`MixtralAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to |
|
SDPA API. |
|
""" |
|
|
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
if output_attentions: |
|
|
|
logger.warning_once( |
|
"MixtralModel is using MixtralSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " |
|
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' |
|
) |
|
return super().forward( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) |
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) |
|
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) |
|
|
|
if past_key_value is not None: |
|
cache_kwargs = {"sin": sin, "cos": cos} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" |
|
) |
|
|
|
|
|
|
|
if query_states.device.type == "cuda" and attention_mask is not None: |
|
query_states = query_states.contiguous() |
|
key_states = key_states.contiguous() |
|
value_states = value_states.contiguous() |
|
|
|
|
|
|
|
|
|
is_causal = True if self.is_causal and attention_mask is None and q_len > 1 else False |
|
|
|
attn_output = torch.nn.functional.scaled_dot_product_attention( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attn_mask=attention_mask, |
|
dropout_p=self.attention_dropout if self.training else 0.0, |
|
is_causal=is_causal, |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.view(bsz, q_len, self.hidden_size) |
|
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
return attn_output, None, past_key_value |
|
|
|
|
|
MIXTRAL_ATTENTION_CLASSES = { |
|
"eager": TurboSparseMixtralAttention, |
|
"flash_attention_2": TurboSparseMixtralFlashAttention2, |
|
"sdpa": TurboSparseMixtralSdpaAttention, |
|
} |
|
|
|
class MLP(nn.Module): |
|
def __init__(self, input_dim, hidden_dim, output_dim): |
|
super(MLP, self).__init__() |
|
self.fc1 = nn.Linear(input_dim, hidden_dim,bias=False) |
|
self.relu = nn.ReLU() |
|
self.fc2 = nn.Linear(hidden_dim, output_dim,bias=False) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.relu(x) |
|
x = self.fc2(x) |
|
x = x.sigmoid() |
|
return x |
|
class TurboSparseMixtralBlockSparseTop2MLP(nn.Module): |
|
def __init__(self, config: TurboSparseMixtralConfig, layer_id): |
|
super().__init__() |
|
self.ffn_dim = config.intermediate_size |
|
self.hidden_dim = config.hidden_size |
|
|
|
self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False) |
|
self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False) |
|
self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False) |
|
self.predictor_dim = [896, 896, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1088, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1088, 1088, 1088, 1088, 1344] |
|
self.predictor = MLP(4096, self.predictor_dim[layer_id], 14336) |
|
|
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
def forward(self, hidden_states): |
|
mask = self.predictor(hidden_states) |
|
current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.act_fn(self.w3(hidden_states)) |
|
hard_mask = torch.round(mask) |
|
mask = mask + (hard_mask - mask).detach() |
|
current_hidden_states = torch.mul(current_hidden_states, mask) |
|
current_hidden_states = self.w2(current_hidden_states) |
|
return current_hidden_states |
|
|
|
|
|
class TurboSparseMixtralSparseMoeBlock(nn.Module): |
|
""" |
|
This implementation is |
|
strictly equivalent to standard MoE with full capacity (no |
|
dropped tokens). It's faster since it formulates MoE operations |
|
in terms of block-sparse operations to accomodate imbalanced |
|
assignments of tokens to experts, whereas standard MoE either |
|
(1) drop tokens at the cost of reduced performance or (2) set |
|
capacity factor to number of experts and thus waste computation |
|
and memory on padding. |
|
""" |
|
|
|
def __init__(self, config, layer_id): |
|
super().__init__() |
|
self.hidden_dim = config.hidden_size |
|
self.ffn_dim = config.intermediate_size |
|
self.num_experts = config.num_local_experts |
|
self.top_k = config.num_experts_per_tok |
|
|
|
|
|
self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False) |
|
|
|
self.experts = nn.ModuleList([TurboSparseMixtralBlockSparseTop2MLP(config, layer_id) for _ in range(self.num_experts)]) |
|
|
|
|
|
self.jitter_noise = config.router_jitter_noise |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
""" """ |
|
batch_size, sequence_length, hidden_dim = hidden_states.shape |
|
if self.training and self.jitter_noise > 0: |
|
hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise) |
|
hidden_states = hidden_states.view(-1, hidden_dim) |
|
|
|
router_logits = self.gate(hidden_states) |
|
|
|
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) |
|
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1) |
|
routing_weights /= routing_weights.sum(dim=-1, keepdim=True) |
|
|
|
routing_weights = routing_weights.to(hidden_states.dtype) |
|
|
|
final_hidden_states = torch.zeros( |
|
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device |
|
) |
|
|
|
|
|
|
|
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0) |
|
|
|
|
|
for expert_idx in range(self.num_experts): |
|
expert_layer = self.experts[expert_idx] |
|
idx, top_x = torch.where(expert_mask[expert_idx]) |
|
|
|
|
|
|
|
|
|
current_state = hidden_states[None, top_x].reshape(-1, hidden_dim) |
|
current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None] |
|
|
|
|
|
|
|
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype)) |
|
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim) |
|
return final_hidden_states, router_logits |
|
|
|
|
|
class TurboSparseMixtralDecoderLayer(nn.Module): |
|
def __init__(self, config: TurboSparseMixtralConfig, layer_idx: int): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
|
|
self.self_attn = MIXTRAL_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) |
|
|
|
self.block_sparse_moe = TurboSparseMixtralSparseMoeBlock(config, layer_idx) |
|
self.input_layernorm = TurboSparseMixtralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.post_attention_layernorm = TurboSparseMixtralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
output_router_logits: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size |
|
`(batch, sequence_length)` where padding elements are indicated by 0. |
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
output_router_logits (`bool`, *optional*): |
|
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and |
|
should not be returned during inference. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
""" |
|
|
|
residual = hidden_states |
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
hidden_states, router_logits = self.block_sparse_moe(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
if output_router_logits: |
|
outputs += (router_logits,) |
|
|
|
return outputs |
|
|
|
|
|
MIXTRAL_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`MixtralConfig`]): |
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
load the weights associated with the model, only the configuration. Check out the |
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Mixtral Model outputting raw hidden-states without any specific head on top.", |
|
MIXTRAL_START_DOCSTRING, |
|
) |
|
|
|
class TurboSparseMixtralPreTrainedModel(PreTrainedModel): |
|
config_class = TurboSparseMixtralConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["TurboSparseMixtralDecoderLayer"] |
|
_skip_keys_device_placement = "past_key_values" |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
_supports_cache_class = True |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
MIXTRAL_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see |
|
`past_key_values`). |
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] |
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
information on the default strategy. |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape |
|
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention |
|
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
output_router_logits (`bool`, *optional*): |
|
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and |
|
should not be returned during inference. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Mixtral Model outputting raw hidden-states without any specific head on top.", |
|
MIXTRAL_START_DOCSTRING, |
|
) |
|
|
|
|
|
class TurboSparseMixtralModel(TurboSparseMixtralPreTrainedModel): |
|
""" |
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MixtralDecoderLayer`] |
|
|
|
Args: |
|
config: MixtralConfig |
|
""" |
|
|
|
def __init__(self, config: TurboSparseMixtralConfig): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
self.layers = nn.ModuleList( |
|
[TurboSparseMixtralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
) |
|
self._attn_implementation = config._attn_implementation |
|
self.norm = TurboSparseMixtralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
|
|
@add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
output_router_logits: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, MoeModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_router_logits = ( |
|
output_router_logits if output_router_logits is not None else self.config.output_router_logits |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
else: |
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") |
|
|
|
past_key_values_length = 0 |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
if use_cache: |
|
use_legacy_cache = not isinstance(past_key_values, Cache) |
|
if use_legacy_cache: |
|
past_key_values = DynamicCache.from_legacy_cache(past_key_values) |
|
past_key_values_length = past_key_values.get_usable_length(seq_length) |
|
|
|
if position_ids is None: |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
position_ids = torch.arange( |
|
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device |
|
) |
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length) |
|
else: |
|
position_ids = position_ids.view(-1, seq_length).long() |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache: |
|
is_padding_right = attention_mask[:, -1].sum().item() != batch_size |
|
if is_padding_right: |
|
raise ValueError( |
|
"You are attempting to perform batched generation with padding_side='right'" |
|
" this may lead to unexpected behaviour for Flash Attention version of Mixtral. Make sure to " |
|
" call `tokenizer.padding_side = 'left'` before tokenizing the input. " |
|
) |
|
|
|
if self._attn_implementation == "flash_attention_2": |
|
|
|
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None |
|
elif self._attn_implementation == "sdpa" and not output_attentions: |
|
|
|
|
|
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( |
|
attention_mask, |
|
(batch_size, seq_length), |
|
inputs_embeds, |
|
past_key_values_length, |
|
sliding_window=self.config.sliding_window, |
|
) |
|
else: |
|
|
|
attention_mask = _prepare_4d_causal_attention_mask( |
|
attention_mask, |
|
(batch_size, seq_length), |
|
inputs_embeds, |
|
past_key_values_length, |
|
sliding_window=self.config.sliding_window, |
|
) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
all_router_logits = () if output_router_logits else None |
|
next_decoder_cache = None |
|
|
|
for decoder_layer in self.layers: |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
decoder_layer.__call__, |
|
hidden_states, |
|
attention_mask, |
|
position_ids, |
|
past_key_values, |
|
output_attentions, |
|
output_router_logits, |
|
use_cache, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_values, |
|
output_attentions=output_attentions, |
|
output_router_logits=output_router_logits, |
|
use_cache=use_cache, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1] |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
if output_router_logits: |
|
all_router_logits += (layer_outputs[-1],) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = None |
|
if use_cache: |
|
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits] |
|
if v is not None |
|
) |
|
return MoeModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
router_logits=all_router_logits, |
|
) |
|
|
|
|
|
class TurboSparseMixtralForCausalLM(TurboSparseMixtralPreTrainedModel): |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = TurboSparseMixtralModel(config) |
|
self.vocab_size = config.vocab_size |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
self.router_aux_loss_coef = config.router_aux_loss_coef |
|
self.num_experts = config.num_local_experts |
|
self.num_experts_per_tok = config.num_experts_per_tok |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
@add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
output_router_logits: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, MoeCausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, MixtralForCausalLM |
|
|
|
>>> model = MixtralForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-v0.1") |
|
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-v0.1") |
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?" |
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
>>> # Generate |
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." |
|
```""" |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_router_logits = ( |
|
output_router_logits if output_router_logits is not None else self.config.output_router_logits |
|
) |
|
|
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
output_router_logits=output_router_logits, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.lm_head(hidden_states) |
|
logits = logits.float() |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
aux_loss = None |
|
if output_router_logits: |
|
aux_loss = load_balancing_loss_func( |
|
outputs.router_logits if return_dict else outputs[-1], |
|
self.num_experts, |
|
self.num_experts_per_tok, |
|
attention_mask, |
|
) |
|
if labels is not None: |
|
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
if output_router_logits: |
|
output = (aux_loss,) + output |
|
return (loss,) + output if loss is not None else output |
|
|
|
return MoeCausalLMOutputWithPast( |
|
loss=loss, |
|
aux_loss=aux_loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
router_logits=outputs.router_logits, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
past_key_values=None, |
|
attention_mask=None, |
|
inputs_embeds=None, |
|
output_router_logits=False, |
|
**kwargs, |
|
): |
|
|
|
if past_key_values is not None: |
|
if isinstance(past_key_values, Cache): |
|
cache_length = past_key_values.get_seq_length() |
|
past_length = past_key_values.seen_tokens |
|
max_cache_length = past_key_values.get_max_length() |
|
else: |
|
cache_length = past_length = past_key_values[0][0].shape[2] |
|
max_cache_length = None |
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: |
|
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] |
|
|
|
|
|
elif past_length < input_ids.shape[1]: |
|
input_ids = input_ids[:, past_length:] |
|
|
|
|
|
|
|
if ( |
|
max_cache_length is not None |
|
and attention_mask is not None |
|
and cache_length + input_ids.shape[1] > max_cache_length |
|
): |
|
attention_mask = attention_mask[:, -max_cache_length:] |
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -input_ids.shape[1] :] |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"position_ids": position_ids, |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
"output_router_logits": output_router_logits, |
|
} |
|
) |
|
return model_inputs |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += ( |
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), |
|
) |
|
return reordered_past |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The Mixtral Model transformer with a sequence classification head on top (linear layer). |
|
|
|
[`MixtralForSequenceClassification`] uses the last token in order to do the classification, as other causal models |
|
(e.g. GPT-2) do. |
|
|
|
Since it does classification on the last token, it requires to know the position of the last token. If a |
|
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If |
|
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the |
|
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in |
|
each row of the batch). |
|
""", |
|
MIXTRAL_START_DOCSTRING, |
|
) |
|
|
|
class TurboSparseMixtralForSequenceClassification(TurboSparseMixtralPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.model = TurboSparseMixtralModel(config) |
|
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
@add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, SequenceClassifierOutputWithPast]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
transformer_outputs = self.model( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = transformer_outputs[0] |
|
logits = self.score(hidden_states) |
|
|
|
if input_ids is not None: |
|
batch_size = input_ids.shape[0] |
|
else: |
|
batch_size = inputs_embeds.shape[0] |
|
|
|
if self.config.pad_token_id is None and batch_size != 1: |
|
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") |
|
if self.config.pad_token_id is None: |
|
sequence_lengths = -1 |
|
else: |
|
if input_ids is not None: |
|
|
|
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 |
|
sequence_lengths = sequence_lengths % input_ids.shape[-1] |
|
sequence_lengths = sequence_lengths.to(logits.device) |
|
else: |
|
sequence_lengths = -1 |
|
|
|
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] |
|
|
|
loss = None |
|
if labels is not None: |
|
labels = labels.to(logits.device) |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(pooled_logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(pooled_logits, labels) |
|
if not return_dict: |
|
output = (pooled_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutputWithPast( |
|
loss=loss, |
|
logits=pooled_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The Mixtral Model transformer with a token classification head on top (a linear layer on top of the hidden-states |
|
output) e.g. for Named-Entity-Recognition (NER) tasks. |
|
""", |
|
MIXTRAL_START_DOCSTRING, |
|
) |
|
|
|
class TurboSparseMixtralForTokenClassification(TurboSparseMixtralPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.model = TurboSparseMixtralModel(config) |
|
if getattr(config, "classifier_dropout", None) is not None: |
|
classifier_dropout = config.classifier_dropout |
|
elif getattr(config, "hidden_dropout", None) is not None: |
|
classifier_dropout = config.hidden_dropout |
|
else: |
|
classifier_dropout = 0.1 |
|
self.dropout = nn.Dropout(classifier_dropout) |
|
self.score = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
@add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, SequenceClassifierOutputWithPast]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.model( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = outputs[0] |
|
sequence_output = self.dropout(sequence_output) |
|
logits = self.score(sequence_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return TokenClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|