Porridge9243 commited on
Commit
276cf38
1 Parent(s): c1c33e1

model from unit 1 exercise

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 228.20 +/- 57.54
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 252.22 +/- 43.79
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcde5ed28b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcde5ed2940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcde5ed29d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcde5ed2a60>", "_build": "<function ActorCriticPolicy._build at 0x7fcde5ed2af0>", "forward": "<function ActorCriticPolicy.forward at 0x7fcde5ed2b80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcde5ed2c10>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcde5ed2ca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcde5ed2d30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcde5ed2dc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcde5ed2e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fcde5ecacc0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673089117887256698, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADpser4e1KE+gg+kPchGgr5P30S94mqsvAAAAAAAAAAA7XNEPrbjILx2qlYzEjVMsGxbiL1POr+zAACAPwAAgD/j34U+gTPPvIngnbcOaAk20QIzvoL0wjYAAIA/AACAPw3owj0EoLQ9OEHhvUeDMr6MIGG8XBwFvQAAAAAAAAAAGldAvmRNjj/+ohO/OiEIv1KaRb4UqT2+AAAAAAAAAAB2E54+HVZcPiaM4b3d7Wq+jdUdPauXe7sAAAAAAAAAACBiBr7bWgU/CJ+DPZHurr5QhdC8nbTeugAAAAAAAAAAAM4JPqm/AT+QN7q9c0egvkE/MjvyjYS9AAAAAAAAAABm5q875LS4PwWu6Dy1xTm+jgQnvJNaarwAAAAAAAAAALo/IT62JgK86GFKPIUQc7qBHWO986ZLuwAAgD8AAIA/WpdRPuEysrzvc4Q8fhXnuqwAIb5d3LS7AACAPwAAgD8tFDq+KPLMvPHxjDrzywI5E70yPoKNv7kAAIA/AACAPzO9/zwOe9A9UFgkPUcZVL5jJTA7MyO4PAAAAAAAAAAAU4xLPtqsAL0R+Cy6PHGtOJCaX77LE3A5AACAPwAAgD96fkw+AcXYvEppITt/Uqm5LS1Evr7iXLoAAIA/AACAP3rfnz5NNKc+dqoMvrtreL52H2c9HiNpvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVYRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYHXkSGfCcECUhpRSlIwBbJRNCAGMAXSUR0CpTsXiBGx2dX2UKGgGaAloD0MIXWqEfiYvb0CUhpRSlGgVTRYBaBZHQKlO9J8v25B1fZQoaAZoCWgPQwh0KENVTF5vQJSGlFKUaBVL1mgWR0CpT6i2DxsmdX2UKGgGaAloD0MI7WZGPxq5cECUhpRSlGgVTYwBaBZHQKlP4W2PT5R1fZQoaAZoCWgPQwjs3R/v1VlvQJSGlFKUaBVNDAFoFkdAqVA0Xm/34HV9lChoBmgJaA9DCDYiGAeXJGxAlIaUUpRoFU0QAWgWR0CpUD/Zdv87dX2UKGgGaAloD0MIuB6F69EraECUhpRSlGgVTQABaBZHQKlSqpfhMrV1fZQoaAZoCWgPQwhIh4cw/kJtQJSGlFKUaBVL8WgWR0CpUu2w/xDtdX2UKGgGaAloD0MI7/54r9pkYUCUhpRSlGgVTegDaBZHQKlS/Kyv9tN1fZQoaAZoCWgPQwjQmEnUSwVwQJSGlFKUaBVNDQFoFkdAqVOUurZJ1HV9lChoBmgJaA9DCEHWU6uv7j5AlIaUUpRoFUvraBZHQKmDPNIK+i91fZQoaAZoCWgPQwgG19zRP79wQJSGlFKUaBVNQgFoFkdAqYNKUxEfDHV9lChoBmgJaA9DCHCyDdwB5nBAlIaUUpRoFUvyaBZHQKmDmM5wOvt1fZQoaAZoCWgPQwgnT1lNV9xxQJSGlFKUaBVNUQFoFkdAqYQypLmITHV9lChoBmgJaA9DCNEeL6QD+nBAlIaUUpRoFU0MAWgWR0CphK+2d/aydX2UKGgGaAloD0MITn/2I0WAb0CUhpRSlGgVTQYBaBZHQKmExG1hLGt1fZQoaAZoCWgPQwhh3Xh3JMRwQJSGlFKUaBVNPgFoFkdAqYTggieNDXV9lChoBmgJaA9DCKWeBaE82G9AlIaUUpRoFU0PAWgWR0CphTGaYu01dX2UKGgGaAloD0MI8UV7vNDtcUCUhpRSlGgVTSABaBZHQKmFhcafjCJ1fZQoaAZoCWgPQwiJeyx9aIluQJSGlFKUaBVL42gWR0CphkTqbBoFdX2UKGgGaAloD0MISu1FtF1Cc0CUhpRSlGgVTSMBaBZHQKmHUkleF+N1fZQoaAZoCWgPQwiGOUGbHEI5QJSGlFKUaBVLo2gWR0Cph6/grH2idX2UKGgGaAloD0MIhZm2f2XHbUCUhpRSlGgVS+poFkdAqYf3sRg7YHV9lChoBmgJaA9DCGuDE9EvJG1AlIaUUpRoFU0GAWgWR0CpiDGtITXbdX2UKGgGaAloD0MIsTVbeYlQcECUhpRSlGgVS+JoFkdAqYh4ZCOWB3V9lChoBmgJaA9DCDbM0Hgi/EpAlIaUUpRoFUvRaBZHQKmItgIhQnB1fZQoaAZoCWgPQwjZ690fbwFxQJSGlFKUaBVNJAFoFkdAqYi7TMJQcnV9lChoBmgJaA9DCNEF9S1zMjxAlIaUUpRoFUvcaBZHQKmJvJsfq5d1fZQoaAZoCWgPQwhda+9T1VtsQJSGlFKUaBVNgwFoFkdAqYnle0G/vnV9lChoBmgJaA9DCJEnSdcMrnBAlIaUUpRoFU0NAWgWR0CpifrWZqmCdX2UKGgGaAloD0MIcEOM1zwXZECUhpRSlGgVTegDaBZHQKmKHZcLSeB1fZQoaAZoCWgPQwgnaJPDJzlwQJSGlFKUaBVNWQFoFkdAqYubK7qY7nV9lChoBmgJaA9DCJZdMLgmbXFAlIaUUpRoFU1JAWgWR0CpjIsURFqjdX2UKGgGaAloD0MIGFqdnGGccUCUhpRSlGgVTQgBaBZHQKmM+QTVUdd1fZQoaAZoCWgPQwi/mZguRGZxQJSGlFKUaBVNJgFoFkdAqY1YVj7Q9nV9lChoBmgJaA9DCAEUI0ummXBAlIaUUpRoFU0PAWgWR0Cpja16u4gBdX2UKGgGaAloD0MIsmZkkPurcUCUhpRSlGgVTUgBaBZHQKmNumce8wp1fZQoaAZoCWgPQwhVF/AyQ6RwQJSGlFKUaBVNIwFoFkdAqY5eVu76HnV9lChoBmgJaA9DCNQP6iJFdnBAlIaUUpRoFU0sAWgWR0CpjojPnjhldX2UKGgGaAloD0MIzApFup+MbkCUhpRSlGgVS/doFkdAqY6ynLq2SnV9lChoBmgJaA9DCPYKC+4HumFAlIaUUpRoFU3oA2gWR0Cpjr0m+j/NdX2UKGgGaAloD0MIIxEawcbubUCUhpRSlGgVS/toFkdAqY7XqoqCpXV9lChoBmgJaA9DCDhlbr4RhVxAlIaUUpRoFU3oA2gWR0Cpj4+98JD3dX2UKGgGaAloD0MIww34/PCqcECUhpRSlGgVTRMBaBZHQKmQuRLbpNd1fZQoaAZoCWgPQwjhJM0fUwlqQJSGlFKUaBVL82gWR0CpkVWac7QtdX2UKGgGaAloD0MIUrgehSuxcECUhpRSlGgVS/toFkdAqZLF+TeO43V9lChoBmgJaA9DCPz89+A1FW9AlIaUUpRoFUvtaBZHQKmTBKGtZFJ1fZQoaAZoCWgPQwjecvVjEyxvQJSGlFKUaBVNKgFoFkdAqZMV7dBSk3V9lChoBmgJaA9DCHZsBOJ1nXBAlIaUUpRoFU0tAWgWR0CpkzIL5RCQdX2UKGgGaAloD0MIP62iP3RLcECUhpRSlGgVTQQBaBZHQKmTY1tO2y91fZQoaAZoCWgPQwibOo+Kv81wQJSGlFKUaBVNEQFoFkdAqZNuP/7zkXV9lChoBmgJaA9DCERRoE/k1XFAlIaUUpRoFU0rAWgWR0CplBc5sCT2dX2UKGgGaAloD0MIkJ4ih4icbUCUhpRSlGgVTQABaBZHQKmURC+De0p1fZQoaAZoCWgPQwgC1xUzwqZiQJSGlFKUaBVN6ANoFkdAqZTUMTewcHV9lChoBmgJaA9DCDqvsUsULHNAlIaUUpRoFU3UAWgWR0CplSkbxVhkdX2UKGgGaAloD0MIU5J1ODo3cUCUhpRSlGgVTR8BaBZHQKmV83Jgb6x1fZQoaAZoCWgPQwjL2NDNvlhwQJSGlFKUaBVL2mgWR0Cplt8twrDqdX2UKGgGaAloD0MIkKD4MaafcECUhpRSlGgVS/NoFkdAqZcguCf6GnV9lChoBmgJaA9DCIANiBBXq25AlIaUUpRoFUv1aBZHQKmXiG7Bfrt1fZQoaAZoCWgPQwhHjQkxlzpvQJSGlFKUaBVL/WgWR0Cpl5eJgsshdX2UKGgGaAloD0MIBtfc0f9ZbUCUhpRSlGgVS/9oFkdAqZfp6IFeOXV9lChoBmgJaA9DCNC2mnVGUnBAlIaUUpRoFU0TAWgWR0CpmFEsz2vjdX2UKGgGaAloD0MIQKIJFHGbcECUhpRSlGgVS/doFkdAqZhxBzFMqXV9lChoBmgJaA9DCG73cp+cqGBAlIaUUpRoFU3oA2gWR0CpmtDklu3udX2UKGgGaAloD0MINe84RQdDckCUhpRSlGgVTVQBaBZHQKmbN3h4t6J1fZQoaAZoCWgPQwiYNbHAF1RwQJSGlFKUaBVNEQFoFkdAqZtBKL8763V9lChoBmgJaA9DCC/h0Fs8SG1AlIaUUpRoFU19AWgWR0Cpm1b+Lm6odX2UKGgGaAloD0MI+HDJceffcECUhpRSlGgVTQUBaBZHQKmb/v/BFd91fZQoaAZoCWgPQwhPzeUGQ6tbQJSGlFKUaBVN6ANoFkdAqZxrcXWOInV9lChoBmgJaA9DCLTKTGn9bmxAlIaUUpRoFUv5aBZHQKmcgiPhhph1fZQoaAZoCWgPQwjNA1jkV4RwQJSGlFKUaBVL/2gWR0CpnI/k/8l5dX2UKGgGaAloD0MIV2DI6tZFYECUhpRSlGgVTegDaBZHQKmcwYR/ViF1fZQoaAZoCWgPQwjoMF9eQNtwQJSGlFKUaBVNJwFoFkdAqZzireZXuHV9lChoBmgJaA9DCByVm6il925AlIaUUpRoFU0AAWgWR0CpnThRAKOUdX2UKGgGaAloD0MIs2FNZRHqcECUhpRSlGgVTRoBaBZHQKmdtLA57w91fZQoaAZoCWgPQwgy5UNQNWZyQJSGlFKUaBVNRgFoFkdAqZ3y3AmAsnV9lChoBmgJaA9DCIoEU83sHnBAlIaUUpRoFUvlaBZHQKmfKcXFcY91fZQoaAZoCWgPQwjGMv0S8WxtQJSGlFKUaBVL8GgWR0Cpn2sVLzwudX2UKGgGaAloD0MIO1J95xfiYkCUhpRSlGgVTegDaBZHQKmflhc7heh1fZQoaAZoCWgPQwgUIApmTL1wQJSGlFKUaBVNTwFoFkdAqaDTRc/t6XV9lChoBmgJaA9DCPNxbagYCz1AlIaUUpRoFUvVaBZHQKmg+7U5MlF1fZQoaAZoCWgPQwg82jhibQByQJSGlFKUaBVNKgFoFkdAqaE/L9uP3nV9lChoBmgJaA9DCE1p/S0BYHFAlIaUUpRoFU0RAWgWR0CpoVHt4RmLdX2UKGgGaAloD0MIn+QOm0j4bUCUhpRSlGgVTScBaBZHQKmiHnKW9lF1fZQoaAZoCWgPQwiiluZWiLltQJSGlFKUaBVNSAFoFkdAqaI+912aD3V9lChoBmgJaA9DCG/Tn/0IeHBAlIaUUpRoFU2sA2gWR0Cporx8D0UXdX2UKGgGaAloD0MICHWRQplTcUCUhpRSlGgVTSkBaBZHQKmjJCqIacZ1fZQoaAZoCWgPQwivWwTGOjdxQJSGlFKUaBVNKwFoFkdAqaNtN+LFXXV9lChoBmgJaA9DCFDG+DD7I3BAlIaUUpRoFUvzaBZHQKmjp7cfvF51fZQoaAZoCWgPQwhk6UMXVOdvQJSGlFKUaBVL6WgWR0Cpo9nkcS5BdX2UKGgGaAloD0MIoFIlyl43bECUhpRSlGgVTT8DaBZHQKmkXJaq0dB1fZQoaAZoCWgPQwg0nZ0MDqhxQJSGlFKUaBVNQgFoFkdAqaU7Yh+vyXV9lChoBmgJaA9DCLu3IjFBE3BAlIaUUpRoFU0HAWgWR0CppX6naWX1dX2UKGgGaAloD0MInFHzVTLacECUhpRSlGgVTQsBaBZHQKmls4Ajps51fZQoaAZoCWgPQwgceLXc2XFxQJSGlFKUaBVL+2gWR0CppbqtYB/7dX2UKGgGaAloD0MIXOhKBCr9bUCUhpRSlGgVTRkBaBZHQKmmMQ8OkLx1fZQoaAZoCWgPQwgkmdU7XD1uQJSGlFKUaBVL7mgWR0CpplRjBl+WdX2UKGgGaAloD0MIIqmFkklycUCUhpRSlGgVS+hoFkdAqaarhUBGQXV9lChoBmgJaA9DCEBPAwZJkG9AlIaUUpRoFU0IAWgWR0Cpp+QrMC9zdX2UKGgGaAloD0MIIgA49iyxcECUhpRSlGgVS9hoFkdAqagELc9GJHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efd5bf53d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efd5bf53dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efd5bf53e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efd5bf53ee0>", "_build": "<function ActorCriticPolicy._build at 0x7efd5bf53f70>", "forward": "<function ActorCriticPolicy.forward at 0x7efd5bed7040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efd5bed70d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efd5bed7160>", "_predict": "<function ActorCriticPolicy._predict at 0x7efd5bed71f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efd5bed7280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efd5bed7310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efd5bed73a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7efd5bf51e40>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679241423227159636, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMw57xIXco7qHSzvTLN+73FnRW9kr8KPQAAAAAAAAAAM/KZPTC8sz+a0vs+4ulHvvLRaD0TAXs+AAAAAAAAAADDUMG+N7XtvbE7xbgQ32q3rsrFPlAiUTUAAIA/AAAAAHOu0T2kCTo8K2nuvSbfz71EKiO9a9XlPAAAAAAAAAAAk9kCPtfaQLsidpM3Fdb6tAHqlLwCpbu2AACAPwAAgD8gSxk+mbb8PijNz75xJbq+jxjQPI9KzL4AAAAAAAAAAMbiE74CXjU/nIEmvnO99L5cF6e9cH3nPAAAAAAAAAAAvbeNvtcKDr16z9E6LxCBOUE8dz4V6Ai6AACAPwAAgD/wdH2+XJlyvNaRujqU7wY5NJrcPWsplbkAAIA/AACAPwCgkTrs/tK7fba6O73nrDzggCw9AaqQvQAAgD8AAIA/+u1qPie9eT6kDkS+PCilvtDEN7yyrIK6AAAAAAAAAACm5MG9e0SAukCgm7qWGbE8F6IWuyMgmD0AAIA/AACAP+1YVz5NdVg+0Kxsvqxkir7hLgm9zWS9uwAAAAAAAAAApkCEvXC/sj+fXYa+bgmrvnPmqbxKFCW9AAAAAAAAAACABkK9L3sePZD/2j3VYIK+JLAKPXLmyj0AAAAAAAAAANoOFT64deW7LLCpO5T127kSYDa9F1q5ugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVSBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvD5z1qe2YECUhpRSlIwBbJRN6AOMAXSUR0CZMQq+rU9ZdX2UKGgGaAloD0MIWU3XE50bcECUhpRSlGgVS/RoFkdAmTGNfkWAPXV9lChoBmgJaA9DCHFzKhmAb21AlIaUUpRoFUvXaBZHQJkyokRjBmB1fZQoaAZoCWgPQwjDnKBNjnlxQJSGlFKUaBVL8mgWR0CZNEmPYFq0dX2UKGgGaAloD0MIaYzWUVUVc0CUhpRSlGgVS+9oFkdAmTSIQrc0tXV9lChoBmgJaA9DCBwLCoPyYnBAlIaUUpRoFUvJaBZHQJmf5EofCAN1fZQoaAZoCWgPQwg09bpFoCdxQJSGlFKUaBVL5GgWR0CZoLO3UhFFdX2UKGgGaAloD0MI1lbsLzvncECUhpRSlGgVTRgBaBZHQJmiVPhybQV1fZQoaAZoCWgPQwhoIJbNnCxxQJSGlFKUaBVL/2gWR0CZo3hr30wrdX2UKGgGaAloD0MIPMCTFq6VcECUhpRSlGgVTQYBaBZHQJml53yI55t1fZQoaAZoCWgPQwhLcsCupqptQJSGlFKUaBVNGgFoFkdAmaYj3/Pw/nV9lChoBmgJaA9DCM6mI4Cbxm1AlIaUUpRoFUv0aBZHQJmmgZiuuA91fZQoaAZoCWgPQwhcqz3shSBvQJSGlFKUaBVL3mgWR0CZp5h2GIsRdX2UKGgGaAloD0MI2XxcG6omcECUhpRSlGgVS+toFkdAmafV9Wp6yHV9lChoBmgJaA9DCOgv9IjR1ltAlIaUUpRoFU3oA2gWR0CZqCn0Cih4dX2UKGgGaAloD0MIMdKL2v0ZbkCUhpRSlGgVS8poFkdAmaiii22G7HV9lChoBmgJaA9DCDelvFZCR3BAlIaUUpRoFUvXaBZHQJmsBArxy4p1fZQoaAZoCWgPQwgk7rH04WhxQJSGlFKUaBVL/2gWR0CZrGyDZlFudX2UKGgGaAloD0MIZJY9CawfckCUhpRSlGgVTVkBaBZHQJmteWGATZh1fZQoaAZoCWgPQwgFGQEVDsdjQJSGlFKUaBVN6ANoFkdAma2ltGd7OXV9lChoBmgJaA9DCHFzKhlAYnBAlIaUUpRoFUviaBZHQJmu5WT5ftx1fZQoaAZoCWgPQwg3+wPldhhwQJSGlFKUaBVL4mgWR0CZr5FB6a9cdX2UKGgGaAloD0MIBMqmXGECYkCUhpRSlGgVTegDaBZHQJmwFbD/EO11fZQoaAZoCWgPQwjgL2ZL1thwQJSGlFKUaBVL32gWR0CZsOjABT4tdX2UKGgGaAloD0MICaTErq17cECUhpRSlGgVTQ0BaBZHQJmw9Fy7wrl1fZQoaAZoCWgPQwiG5jqNtExwQJSGlFKUaBVL8mgWR0CZsVnxJ/XodX2UKGgGaAloD0MI+pl63aLKbUCUhpRSlGgVTacCaBZHQJmxk88s+V11fZQoaAZoCWgPQwgKLlbUYPlwQJSGlFKUaBVL7GgWR0CZsarRBu4xdX2UKGgGaAloD0MI8Ief/x47ZUCUhpRSlGgVTegDaBZHQJmx7Fjurp91fZQoaAZoCWgPQwjmXfWAeUlWQJSGlFKUaBVN6ANoFkdAmbIBL5AQhHV9lChoBmgJaA9DCIhlM4ekeXFAlIaUUpRoFUvSaBZHQJmzoWqLjxV1fZQoaAZoCWgPQwhQjCyZYx5uQJSGlFKUaBVL4mgWR0CZtGFR51NhdX2UKGgGaAloD0MICMvY0E1gYUCUhpRSlGgVTegDaBZHQJm1ff1pTMt1fZQoaAZoCWgPQwibjgBulhxzQJSGlFKUaBVL+mgWR0CZtg+8Gs3idX2UKGgGaAloD0MIdeWzPM8tcUCUhpRSlGgVS+doFkdAmbZXcQAdXHV9lChoBmgJaA9DCFfuBWZFdHBAlIaUUpRoFU0MAWgWR0CZtoQqZtvXdX2UKGgGaAloD0MIz4JQ3keOcECUhpRSlGgVS9toFkdAmbhve+Eh7nV9lChoBmgJaA9DCMdjBirj5nBAlIaUUpRoFU0KAWgWR0CZugj94u9OdX2UKGgGaAloD0MIRSxi2GF9cUCUhpRSlGgVS+5oFkdAmboj0xubZ3V9lChoBmgJaA9DCJuSrMOR8HBAlIaUUpRoFU0YAWgWR0CZusXlbNbDdX2UKGgGaAloD0MItJQsJyGMb0CUhpRSlGgVTREBaBZHQJm7SXY150N1fZQoaAZoCWgPQwgWE5uP629wQJSGlFKUaBVL3mgWR0CZvGi1AqusdX2UKGgGaAloD0MIzlDc8abLckCUhpRSlGgVTWkBaBZHQJm8/HIZIhB1fZQoaAZoCWgPQwhFoPoHEYBwQJSGlFKUaBVL4WgWR0CZvcV+Zw4sdX2UKGgGaAloD0MIEOz4LxA2cUCUhpRSlGgVS+5oFkdAmcADs2NvO3V9lChoBmgJaA9DCEEuceQBM29AlIaUUpRoFUvxaBZHQJnBLDBMzuZ1fZQoaAZoCWgPQwg1YmafRzFxQJSGlFKUaBVNHwFoFkdAmcRGaH9FWnV9lChoBmgJaA9DCLRYiuQrt2pAlIaUUpRoFUvOaBZHQJnEgtnPE891fZQoaAZoCWgPQwh/F7Zm6xBxQJSGlFKUaBVL9WgWR0CZxKDXvphXdX2UKGgGaAloD0MImbfqOlSob0CUhpRSlGgVS95oFkdAmcU7Ve8f3nV9lChoBmgJaA9DCO0PlNv2oW9AlIaUUpRoFUvlaBZHQJnGaDHwPRR1fZQoaAZoCWgPQwjqspjYfHJxQJSGlFKUaBVNSAFoFkdAmca/njhky3V9lChoBmgJaA9DCL6kMVpHi3BAlIaUUpRoFUvoaBZHQJnHI/r0J4V1fZQoaAZoCWgPQwhKmj+mdbVxQJSGlFKUaBVL0mgWR0CZxz6a9bosdX2UKGgGaAloD0MI+MPPf08WcECUhpRSlGgVTQgBaBZHQJnLm85CF9N1fZQoaAZoCWgPQwiJQsu6f9dtQJSGlFKUaBVL3GgWR0CZy8V4HHFQdX2UKGgGaAloD0MIJsRcUrUMcECUhpRSlGgVS9RoFkdAmcxEGNaQm3V9lChoBmgJaA9DCKCkwAIYnG5AlIaUUpRoFUvQaBZHQJnOinn+yZ91fZQoaAZoCWgPQwi/RpIgHJ1xQJSGlFKUaBVL0GgWR0CZz/zErGzbdX2UKGgGaAloD0MIYwrWONt8cECUhpRSlGgVTQYBaBZHQJnTIazeGfx1fZQoaAZoCWgPQwhJZB9k2aJgQJSGlFKUaBVN6ANoFkdAmdO3DiwSrnV9lChoBmgJaA9DCDtVvmek9nFAlIaUUpRoFU07AWgWR0CZ1TV/tpmFdX2UKGgGaAloD0MI6s4Tz1kgb0CUhpRSlGgVTWkBaBZHQJnVM14xDb91fZQoaAZoCWgPQwgl63B0VSFyQJSGlFKUaBVL8GgWR0CZ1fdilSCOdX2UKGgGaAloD0MIdVq3Qe2sb0CUhpRSlGgVTagBaBZHQJnYHMINVip1fZQoaAZoCWgPQwgT7wBPWixzQJSGlFKUaBVNKAFoFkdAmdh67ZnL73V9lChoBmgJaA9DCKHXn8QnCXFAlIaUUpRoFUv2aBZHQJnZRd5Y5kt1fZQoaAZoCWgPQwh7ouvCj0RwQJSGlFKUaBVNLgFoFkdAmdlQEhaC+XV9lChoBmgJaA9DCEd3EDtTrHNAlIaUUpRoFUvraBZHQJnaQQg9vCN1fZQoaAZoCWgPQwgfgT/8fC1hQJSGlFKUaBVN6ANoFkdAmds48IRh+nV9lChoBmgJaA9DCBtjJ7yEsW5AlIaUUpRoFUvVaBZHQJnb7+ERJ3B1fZQoaAZoCWgPQwhklj0J7MprQJSGlFKUaBVN5QNoFkdAmdytCRfWtnV9lChoBmgJaA9DCEuRfCUQoWBAlIaUUpRoFU3oA2gWR0CZ3SkIHC40dX2UKGgGaAloD0MIVHJO7GFLcECUhpRSlGgVS81oFkdAmd1Fn27FsHV9lChoBmgJaA9DCIMwt3u5hUNAlIaUUpRoFUvaaBZHQJndtnbqQil1fZQoaAZoCWgPQwh7gsR2d0puQJSGlFKUaBVNMgFoFkdAmd+e49X9znV9lChoBmgJaA9DCIWy8PX1KHNAlIaUUpRoFUvkaBZHQJngfe3x4IN1fZQoaAZoCWgPQwjEmV/NwYVxQJSGlFKUaBVL7GgWR0CZ4RdnCfpVdX2UKGgGaAloD0MI2PLK9TYrckCUhpRSlGgVTTYBaBZHQJnhkumJm/Z1fZQoaAZoCWgPQwjfN772zDpvQJSGlFKUaBVL8GgWR0CZ4ey0rsjWdX2UKGgGaAloD0MIZ5lFKHaccUCUhpRSlGgVS+hoFkdAmeJ+OCGvfXV9lChoBmgJaA9DCIeGxairfnFAlIaUUpRoFU0cAWgWR0CZ424CIUJwdX2UKGgGaAloD0MI96+sNKljbUCUhpRSlGgVS99oFkdAmeRxubZvk3V9lChoBmgJaA9DCPRRRlwAkm1AlIaUUpRoFUvRaBZHQJnkkUfxMFl1fZQoaAZoCWgPQwiHwmfr4OFwQJSGlFKUaBVNIQFoFkdAmeYZ66asqHV9lChoBmgJaA9DCP5F0JhJq3BAlIaUUpRoFUvaaBZHQJnnXCQ9zOp1fZQoaAZoCWgPQwgKuyh64CFaQJSGlFKUaBVN6ANoFkdAmeeYYWLxZ3V9lChoBmgJaA9DCJAQ5Qsa6HBAlIaUUpRoFU00AWgWR0CZ6AAH3UQTdX2UKGgGaAloD0MIYRvxZLf4cECUhpRSlGgVS95oFkdAmelWc8TzunV9lChoBmgJaA9DCJn1YiinyG5AlIaUUpRoFUvlaBZHQJnp8uVX3g11fZQoaAZoCWgPQwjbi2g7ptZuQJSGlFKUaBVL1mgWR0CZ6wbx3FDOdX2UKGgGaAloD0MI+YOB514ibkCUhpRSlGgVTTcBaBZHQJnrdfTkQwt1fZQoaAZoCWgPQwjUt8zpcrBxQJSGlFKUaBVNKwFoFkdAmeug8r7O3XV9lChoBmgJaA9DCNWVz/K8Fm9AlIaUUpRoFUvUaBZHQJnsJpztCzF1fZQoaAZoCWgPQwj1udqK/RliQJSGlFKUaBVN6ANoFkdAme1AGwA2h3V9lChoBmgJaA9DCIQpyqVxqnBAlIaUUpRoFUv3aBZHQJntSofjjrB1fZQoaAZoCWgPQwhjmBO0yXpfQJSGlFKUaBVN6ANoFkdAme6eJLuhK3V9lChoBmgJaA9DCEuUvaXcunBAlIaUUpRoFU0NAWgWR0CZ77y5I6KcdX2UKGgGaAloD0MIBduIJ7tfcUCUhpRSlGgVS85oFkdAmfDCrYGt63V9lChoBmgJaA9DCEbu6eqOTnBAlIaUUpRoFU1qAmgWR0CZ8SVNHpbEdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
lunar_ppo_default_steps_1E6.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0ba1cbb038dbd6735f6359cc5cf8520e430d178daec4011231ccae4db1de24b3
3
- size 147179
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96e012221c3e1f56f53710d9d104c264b5ff97a5dabeecd83a42ad6c45101301
3
+ size 147355
lunar_ppo_default_steps_1E6/_stable_baselines3_version CHANGED
@@ -1 +1 @@
1
- 1.6.2
 
1
+ 1.7.0
lunar_ppo_default_steps_1E6/data CHANGED
@@ -3,20 +3,21 @@
3
  ":type:": "<class 'abc.ABCMeta'>",
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
- "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcde5ed28b0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcde5ed2940>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcde5ed29d0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcde5ed2a60>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7fcde5ed2af0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7fcde5ed2b80>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcde5ed2c10>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7fcde5ed2ca0>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcde5ed2d30>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcde5ed2dc0>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcde5ed2e50>",
 
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7fcde5ecacc0>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
@@ -47,16 +48,16 @@
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1673089117887256698,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
54
  ":type:": "<class 'function'>",
55
- ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADpser4e1KE+gg+kPchGgr5P30S94mqsvAAAAAAAAAAA7XNEPrbjILx2qlYzEjVMsGxbiL1POr+zAACAPwAAgD/j34U+gTPPvIngnbcOaAk20QIzvoL0wjYAAIA/AACAPw3owj0EoLQ9OEHhvUeDMr6MIGG8XBwFvQAAAAAAAAAAGldAvmRNjj/+ohO/OiEIv1KaRb4UqT2+AAAAAAAAAAB2E54+HVZcPiaM4b3d7Wq+jdUdPauXe7sAAAAAAAAAACBiBr7bWgU/CJ+DPZHurr5QhdC8nbTeugAAAAAAAAAAAM4JPqm/AT+QN7q9c0egvkE/MjvyjYS9AAAAAAAAAABm5q875LS4PwWu6Dy1xTm+jgQnvJNaarwAAAAAAAAAALo/IT62JgK86GFKPIUQc7qBHWO986ZLuwAAgD8AAIA/WpdRPuEysrzvc4Q8fhXnuqwAIb5d3LS7AACAPwAAgD8tFDq+KPLMvPHxjDrzywI5E70yPoKNv7kAAIA/AACAPzO9/zwOe9A9UFgkPUcZVL5jJTA7MyO4PAAAAAAAAAAAU4xLPtqsAL0R+Cy6PHGtOJCaX77LE3A5AACAPwAAgD96fkw+AcXYvEppITt/Uqm5LS1Evr7iXLoAAIA/AACAP3rfnz5NNKc+dqoMvrtreL52H2c9HiNpvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
@@ -69,7 +70,7 @@
69
  "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVYRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYHXkSGfCcECUhpRSlIwBbJRNCAGMAXSUR0CpTsXiBGx2dX2UKGgGaAloD0MIXWqEfiYvb0CUhpRSlGgVTRYBaBZHQKlO9J8v25B1fZQoaAZoCWgPQwh0KENVTF5vQJSGlFKUaBVL1mgWR0CpT6i2DxsmdX2UKGgGaAloD0MI7WZGPxq5cECUhpRSlGgVTYwBaBZHQKlP4W2PT5R1fZQoaAZoCWgPQwjs3R/v1VlvQJSGlFKUaBVNDAFoFkdAqVA0Xm/34HV9lChoBmgJaA9DCDYiGAeXJGxAlIaUUpRoFU0QAWgWR0CpUD/Zdv87dX2UKGgGaAloD0MIuB6F69EraECUhpRSlGgVTQABaBZHQKlSqpfhMrV1fZQoaAZoCWgPQwhIh4cw/kJtQJSGlFKUaBVL8WgWR0CpUu2w/xDtdX2UKGgGaAloD0MI7/54r9pkYUCUhpRSlGgVTegDaBZHQKlS/Kyv9tN1fZQoaAZoCWgPQwjQmEnUSwVwQJSGlFKUaBVNDQFoFkdAqVOUurZJ1HV9lChoBmgJaA9DCEHWU6uv7j5AlIaUUpRoFUvraBZHQKmDPNIK+i91fZQoaAZoCWgPQwgG19zRP79wQJSGlFKUaBVNQgFoFkdAqYNKUxEfDHV9lChoBmgJaA9DCHCyDdwB5nBAlIaUUpRoFUvyaBZHQKmDmM5wOvt1fZQoaAZoCWgPQwgnT1lNV9xxQJSGlFKUaBVNUQFoFkdAqYQypLmITHV9lChoBmgJaA9DCNEeL6QD+nBAlIaUUpRoFU0MAWgWR0CphK+2d/aydX2UKGgGaAloD0MITn/2I0WAb0CUhpRSlGgVTQYBaBZHQKmExG1hLGt1fZQoaAZoCWgPQwhh3Xh3JMRwQJSGlFKUaBVNPgFoFkdAqYTggieNDXV9lChoBmgJaA9DCKWeBaE82G9AlIaUUpRoFU0PAWgWR0CphTGaYu01dX2UKGgGaAloD0MI8UV7vNDtcUCUhpRSlGgVTSABaBZHQKmFhcafjCJ1fZQoaAZoCWgPQwiJeyx9aIluQJSGlFKUaBVL42gWR0CphkTqbBoFdX2UKGgGaAloD0MISu1FtF1Cc0CUhpRSlGgVTSMBaBZHQKmHUkleF+N1fZQoaAZoCWgPQwiGOUGbHEI5QJSGlFKUaBVLo2gWR0Cph6/grH2idX2UKGgGaAloD0MIhZm2f2XHbUCUhpRSlGgVS+poFkdAqYf3sRg7YHV9lChoBmgJaA9DCGuDE9EvJG1AlIaUUpRoFU0GAWgWR0CpiDGtITXbdX2UKGgGaAloD0MIsTVbeYlQcECUhpRSlGgVS+JoFkdAqYh4ZCOWB3V9lChoBmgJaA9DCDbM0Hgi/EpAlIaUUpRoFUvRaBZHQKmItgIhQnB1fZQoaAZoCWgPQwjZ690fbwFxQJSGlFKUaBVNJAFoFkdAqYi7TMJQcnV9lChoBmgJaA9DCNEF9S1zMjxAlIaUUpRoFUvcaBZHQKmJvJsfq5d1fZQoaAZoCWgPQwhda+9T1VtsQJSGlFKUaBVNgwFoFkdAqYnle0G/vnV9lChoBmgJaA9DCJEnSdcMrnBAlIaUUpRoFU0NAWgWR0CpifrWZqmCdX2UKGgGaAloD0MIcEOM1zwXZECUhpRSlGgVTegDaBZHQKmKHZcLSeB1fZQoaAZoCWgPQwgnaJPDJzlwQJSGlFKUaBVNWQFoFkdAqYubK7qY7nV9lChoBmgJaA9DCJZdMLgmbXFAlIaUUpRoFU1JAWgWR0CpjIsURFqjdX2UKGgGaAloD0MIGFqdnGGccUCUhpRSlGgVTQgBaBZHQKmM+QTVUdd1fZQoaAZoCWgPQwi/mZguRGZxQJSGlFKUaBVNJgFoFkdAqY1YVj7Q9nV9lChoBmgJaA9DCAEUI0ummXBAlIaUUpRoFU0PAWgWR0Cpja16u4gBdX2UKGgGaAloD0MIsmZkkPurcUCUhpRSlGgVTUgBaBZHQKmNumce8wp1fZQoaAZoCWgPQwhVF/AyQ6RwQJSGlFKUaBVNIwFoFkdAqY5eVu76HnV9lChoBmgJaA9DCNQP6iJFdnBAlIaUUpRoFU0sAWgWR0CpjojPnjhldX2UKGgGaAloD0MIzApFup+MbkCUhpRSlGgVS/doFkdAqY6ynLq2SnV9lChoBmgJaA9DCPYKC+4HumFAlIaUUpRoFU3oA2gWR0Cpjr0m+j/NdX2UKGgGaAloD0MIIxEawcbubUCUhpRSlGgVS/toFkdAqY7XqoqCpXV9lChoBmgJaA9DCDhlbr4RhVxAlIaUUpRoFU3oA2gWR0Cpj4+98JD3dX2UKGgGaAloD0MIww34/PCqcECUhpRSlGgVTRMBaBZHQKmQuRLbpNd1fZQoaAZoCWgPQwjhJM0fUwlqQJSGlFKUaBVL82gWR0CpkVWac7QtdX2UKGgGaAloD0MIUrgehSuxcECUhpRSlGgVS/toFkdAqZLF+TeO43V9lChoBmgJaA9DCPz89+A1FW9AlIaUUpRoFUvtaBZHQKmTBKGtZFJ1fZQoaAZoCWgPQwjecvVjEyxvQJSGlFKUaBVNKgFoFkdAqZMV7dBSk3V9lChoBmgJaA9DCHZsBOJ1nXBAlIaUUpRoFU0tAWgWR0CpkzIL5RCQdX2UKGgGaAloD0MIP62iP3RLcECUhpRSlGgVTQQBaBZHQKmTY1tO2y91fZQoaAZoCWgPQwibOo+Kv81wQJSGlFKUaBVNEQFoFkdAqZNuP/7zkXV9lChoBmgJaA9DCERRoE/k1XFAlIaUUpRoFU0rAWgWR0CplBc5sCT2dX2UKGgGaAloD0MIkJ4ih4icbUCUhpRSlGgVTQABaBZHQKmURC+De0p1fZQoaAZoCWgPQwgC1xUzwqZiQJSGlFKUaBVN6ANoFkdAqZTUMTewcHV9lChoBmgJaA9DCDqvsUsULHNAlIaUUpRoFU3UAWgWR0CplSkbxVhkdX2UKGgGaAloD0MIU5J1ODo3cUCUhpRSlGgVTR8BaBZHQKmV83Jgb6x1fZQoaAZoCWgPQwjL2NDNvlhwQJSGlFKUaBVL2mgWR0Cplt8twrDqdX2UKGgGaAloD0MIkKD4MaafcECUhpRSlGgVS/NoFkdAqZcguCf6GnV9lChoBmgJaA9DCIANiBBXq25AlIaUUpRoFUv1aBZHQKmXiG7Bfrt1fZQoaAZoCWgPQwhHjQkxlzpvQJSGlFKUaBVL/WgWR0Cpl5eJgsshdX2UKGgGaAloD0MIBtfc0f9ZbUCUhpRSlGgVS/9oFkdAqZfp6IFeOXV9lChoBmgJaA9DCNC2mnVGUnBAlIaUUpRoFU0TAWgWR0CpmFEsz2vjdX2UKGgGaAloD0MIQKIJFHGbcECUhpRSlGgVS/doFkdAqZhxBzFMqXV9lChoBmgJaA9DCG73cp+cqGBAlIaUUpRoFU3oA2gWR0CpmtDklu3udX2UKGgGaAloD0MINe84RQdDckCUhpRSlGgVTVQBaBZHQKmbN3h4t6J1fZQoaAZoCWgPQwiYNbHAF1RwQJSGlFKUaBVNEQFoFkdAqZtBKL8763V9lChoBmgJaA9DCC/h0Fs8SG1AlIaUUpRoFU19AWgWR0Cpm1b+Lm6odX2UKGgGaAloD0MI+HDJceffcECUhpRSlGgVTQUBaBZHQKmb/v/BFd91fZQoaAZoCWgPQwhPzeUGQ6tbQJSGlFKUaBVN6ANoFkdAqZxrcXWOInV9lChoBmgJaA9DCLTKTGn9bmxAlIaUUpRoFUv5aBZHQKmcgiPhhph1fZQoaAZoCWgPQwjNA1jkV4RwQJSGlFKUaBVL/2gWR0CpnI/k/8l5dX2UKGgGaAloD0MIV2DI6tZFYECUhpRSlGgVTegDaBZHQKmcwYR/ViF1fZQoaAZoCWgPQwjoMF9eQNtwQJSGlFKUaBVNJwFoFkdAqZzireZXuHV9lChoBmgJaA9DCByVm6il925AlIaUUpRoFU0AAWgWR0CpnThRAKOUdX2UKGgGaAloD0MIs2FNZRHqcECUhpRSlGgVTRoBaBZHQKmdtLA57w91fZQoaAZoCWgPQwgy5UNQNWZyQJSGlFKUaBVNRgFoFkdAqZ3y3AmAsnV9lChoBmgJaA9DCIoEU83sHnBAlIaUUpRoFUvlaBZHQKmfKcXFcY91fZQoaAZoCWgPQwjGMv0S8WxtQJSGlFKUaBVL8GgWR0Cpn2sVLzwudX2UKGgGaAloD0MIO1J95xfiYkCUhpRSlGgVTegDaBZHQKmflhc7heh1fZQoaAZoCWgPQwgUIApmTL1wQJSGlFKUaBVNTwFoFkdAqaDTRc/t6XV9lChoBmgJaA9DCPNxbagYCz1AlIaUUpRoFUvVaBZHQKmg+7U5MlF1fZQoaAZoCWgPQwg82jhibQByQJSGlFKUaBVNKgFoFkdAqaE/L9uP3nV9lChoBmgJaA9DCE1p/S0BYHFAlIaUUpRoFU0RAWgWR0CpoVHt4RmLdX2UKGgGaAloD0MIn+QOm0j4bUCUhpRSlGgVTScBaBZHQKmiHnKW9lF1fZQoaAZoCWgPQwiiluZWiLltQJSGlFKUaBVNSAFoFkdAqaI+912aD3V9lChoBmgJaA9DCG/Tn/0IeHBAlIaUUpRoFU2sA2gWR0Cporx8D0UXdX2UKGgGaAloD0MICHWRQplTcUCUhpRSlGgVTSkBaBZHQKmjJCqIacZ1fZQoaAZoCWgPQwivWwTGOjdxQJSGlFKUaBVNKwFoFkdAqaNtN+LFXXV9lChoBmgJaA9DCFDG+DD7I3BAlIaUUpRoFUvzaBZHQKmjp7cfvF51fZQoaAZoCWgPQwhk6UMXVOdvQJSGlFKUaBVL6WgWR0Cpo9nkcS5BdX2UKGgGaAloD0MIoFIlyl43bECUhpRSlGgVTT8DaBZHQKmkXJaq0dB1fZQoaAZoCWgPQwg0nZ0MDqhxQJSGlFKUaBVNQgFoFkdAqaU7Yh+vyXV9lChoBmgJaA9DCLu3IjFBE3BAlIaUUpRoFU0HAWgWR0CppX6naWX1dX2UKGgGaAloD0MInFHzVTLacECUhpRSlGgVTQsBaBZHQKmls4Ajps51fZQoaAZoCWgPQwgceLXc2XFxQJSGlFKUaBVL+2gWR0CppbqtYB/7dX2UKGgGaAloD0MIXOhKBCr9bUCUhpRSlGgVTRkBaBZHQKmmMQ8OkLx1fZQoaAZoCWgPQwgkmdU7XD1uQJSGlFKUaBVL7mgWR0CpplRjBl+WdX2UKGgGaAloD0MIIqmFkklycUCUhpRSlGgVS+hoFkdAqaarhUBGQXV9lChoBmgJaA9DCEBPAwZJkG9AlIaUUpRoFU0IAWgWR0Cpp+QrMC9zdX2UKGgGaAloD0MIIgA49iyxcECUhpRSlGgVS9hoFkdAqagELc9GJHVlLg=="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
@@ -79,14 +80,14 @@
79
  "n_steps": 2048,
80
  "gamma": 0.99,
81
  "gae_lambda": 0.95,
82
- "ent_coef": 0.0,
83
  "vf_coef": 0.5,
84
  "max_grad_norm": 0.5,
85
  "batch_size": 64,
86
  "n_epochs": 10,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
89
- ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
  },
91
  "clip_range_vf": null,
92
  "normalize_advantage": true,
 
3
  ":type:": "<class 'abc.ABCMeta'>",
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7efd5bf53d30>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efd5bf53dc0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efd5bf53e50>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efd5bf53ee0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7efd5bf53f70>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7efd5bed7040>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efd5bed70d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efd5bed7160>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7efd5bed71f0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efd5bed7280>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efd5bed7310>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efd5bed73a0>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7efd5bf51e40>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
 
48
  "_num_timesteps_at_start": 0,
49
  "seed": null,
50
  "action_noise": null,
51
+ "start_time": 1679241423227159636,
52
  "learning_rate": 0.0003,
53
  "tensorboard_log": null,
54
  "lr_schedule": {
55
  ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
  },
58
  "_last_obs": {
59
  ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMw57xIXco7qHSzvTLN+73FnRW9kr8KPQAAAAAAAAAAM/KZPTC8sz+a0vs+4ulHvvLRaD0TAXs+AAAAAAAAAADDUMG+N7XtvbE7xbgQ32q3rsrFPlAiUTUAAIA/AAAAAHOu0T2kCTo8K2nuvSbfz71EKiO9a9XlPAAAAAAAAAAAk9kCPtfaQLsidpM3Fdb6tAHqlLwCpbu2AACAPwAAgD8gSxk+mbb8PijNz75xJbq+jxjQPI9KzL4AAAAAAAAAAMbiE74CXjU/nIEmvnO99L5cF6e9cH3nPAAAAAAAAAAAvbeNvtcKDr16z9E6LxCBOUE8dz4V6Ai6AACAPwAAgD/wdH2+XJlyvNaRujqU7wY5NJrcPWsplbkAAIA/AACAPwCgkTrs/tK7fba6O73nrDzggCw9AaqQvQAAgD8AAIA/+u1qPie9eT6kDkS+PCilvtDEN7yyrIK6AAAAAAAAAACm5MG9e0SAukCgm7qWGbE8F6IWuyMgmD0AAIA/AACAP+1YVz5NdVg+0Kxsvqxkir7hLgm9zWS9uwAAAAAAAAAApkCEvXC/sj+fXYa+bgmrvnPmqbxKFCW9AAAAAAAAAACABkK9L3sePZD/2j3VYIK+JLAKPXLmyj0AAAAAAAAAANoOFT64deW7LLCpO5T127kSYDa9F1q5ugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
  },
62
  "_last_episode_starts": {
63
  ":type:": "<class 'numpy.ndarray'>",
 
70
  "_current_progress_remaining": -0.015808000000000044,
71
  "ep_info_buffer": {
72
  ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVSBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvD5z1qe2YECUhpRSlIwBbJRN6AOMAXSUR0CZMQq+rU9ZdX2UKGgGaAloD0MIWU3XE50bcECUhpRSlGgVS/RoFkdAmTGNfkWAPXV9lChoBmgJaA9DCHFzKhmAb21AlIaUUpRoFUvXaBZHQJkyokRjBmB1fZQoaAZoCWgPQwjDnKBNjnlxQJSGlFKUaBVL8mgWR0CZNEmPYFq0dX2UKGgGaAloD0MIaYzWUVUVc0CUhpRSlGgVS+9oFkdAmTSIQrc0tXV9lChoBmgJaA9DCBwLCoPyYnBAlIaUUpRoFUvJaBZHQJmf5EofCAN1fZQoaAZoCWgPQwg09bpFoCdxQJSGlFKUaBVL5GgWR0CZoLO3UhFFdX2UKGgGaAloD0MI1lbsLzvncECUhpRSlGgVTRgBaBZHQJmiVPhybQV1fZQoaAZoCWgPQwhoIJbNnCxxQJSGlFKUaBVL/2gWR0CZo3hr30wrdX2UKGgGaAloD0MIPMCTFq6VcECUhpRSlGgVTQYBaBZHQJml53yI55t1fZQoaAZoCWgPQwhLcsCupqptQJSGlFKUaBVNGgFoFkdAmaYj3/Pw/nV9lChoBmgJaA9DCM6mI4Cbxm1AlIaUUpRoFUv0aBZHQJmmgZiuuA91fZQoaAZoCWgPQwhcqz3shSBvQJSGlFKUaBVL3mgWR0CZp5h2GIsRdX2UKGgGaAloD0MI2XxcG6omcECUhpRSlGgVS+toFkdAmafV9Wp6yHV9lChoBmgJaA9DCOgv9IjR1ltAlIaUUpRoFU3oA2gWR0CZqCn0Cih4dX2UKGgGaAloD0MIMdKL2v0ZbkCUhpRSlGgVS8poFkdAmaiii22G7HV9lChoBmgJaA9DCDelvFZCR3BAlIaUUpRoFUvXaBZHQJmsBArxy4p1fZQoaAZoCWgPQwgk7rH04WhxQJSGlFKUaBVL/2gWR0CZrGyDZlFudX2UKGgGaAloD0MIZJY9CawfckCUhpRSlGgVTVkBaBZHQJmteWGATZh1fZQoaAZoCWgPQwgFGQEVDsdjQJSGlFKUaBVN6ANoFkdAma2ltGd7OXV9lChoBmgJaA9DCHFzKhlAYnBAlIaUUpRoFUviaBZHQJmu5WT5ftx1fZQoaAZoCWgPQwg3+wPldhhwQJSGlFKUaBVL4mgWR0CZr5FB6a9cdX2UKGgGaAloD0MIBMqmXGECYkCUhpRSlGgVTegDaBZHQJmwFbD/EO11fZQoaAZoCWgPQwjgL2ZL1thwQJSGlFKUaBVL32gWR0CZsOjABT4tdX2UKGgGaAloD0MICaTErq17cECUhpRSlGgVTQ0BaBZHQJmw9Fy7wrl1fZQoaAZoCWgPQwiG5jqNtExwQJSGlFKUaBVL8mgWR0CZsVnxJ/XodX2UKGgGaAloD0MI+pl63aLKbUCUhpRSlGgVTacCaBZHQJmxk88s+V11fZQoaAZoCWgPQwgKLlbUYPlwQJSGlFKUaBVL7GgWR0CZsarRBu4xdX2UKGgGaAloD0MI8Ief/x47ZUCUhpRSlGgVTegDaBZHQJmx7Fjurp91fZQoaAZoCWgPQwjmXfWAeUlWQJSGlFKUaBVN6ANoFkdAmbIBL5AQhHV9lChoBmgJaA9DCIhlM4ekeXFAlIaUUpRoFUvSaBZHQJmzoWqLjxV1fZQoaAZoCWgPQwhQjCyZYx5uQJSGlFKUaBVL4mgWR0CZtGFR51NhdX2UKGgGaAloD0MICMvY0E1gYUCUhpRSlGgVTegDaBZHQJm1ff1pTMt1fZQoaAZoCWgPQwibjgBulhxzQJSGlFKUaBVL+mgWR0CZtg+8Gs3idX2UKGgGaAloD0MIdeWzPM8tcUCUhpRSlGgVS+doFkdAmbZXcQAdXHV9lChoBmgJaA9DCFfuBWZFdHBAlIaUUpRoFU0MAWgWR0CZtoQqZtvXdX2UKGgGaAloD0MIz4JQ3keOcECUhpRSlGgVS9toFkdAmbhve+Eh7nV9lChoBmgJaA9DCMdjBirj5nBAlIaUUpRoFU0KAWgWR0CZugj94u9OdX2UKGgGaAloD0MIRSxi2GF9cUCUhpRSlGgVS+5oFkdAmboj0xubZ3V9lChoBmgJaA9DCJuSrMOR8HBAlIaUUpRoFU0YAWgWR0CZusXlbNbDdX2UKGgGaAloD0MItJQsJyGMb0CUhpRSlGgVTREBaBZHQJm7SXY150N1fZQoaAZoCWgPQwgWE5uP629wQJSGlFKUaBVL3mgWR0CZvGi1AqusdX2UKGgGaAloD0MIzlDc8abLckCUhpRSlGgVTWkBaBZHQJm8/HIZIhB1fZQoaAZoCWgPQwhFoPoHEYBwQJSGlFKUaBVL4WgWR0CZvcV+Zw4sdX2UKGgGaAloD0MIEOz4LxA2cUCUhpRSlGgVS+5oFkdAmcADs2NvO3V9lChoBmgJaA9DCEEuceQBM29AlIaUUpRoFUvxaBZHQJnBLDBMzuZ1fZQoaAZoCWgPQwg1YmafRzFxQJSGlFKUaBVNHwFoFkdAmcRGaH9FWnV9lChoBmgJaA9DCLRYiuQrt2pAlIaUUpRoFUvOaBZHQJnEgtnPE891fZQoaAZoCWgPQwh/F7Zm6xBxQJSGlFKUaBVL9WgWR0CZxKDXvphXdX2UKGgGaAloD0MImbfqOlSob0CUhpRSlGgVS95oFkdAmcU7Ve8f3nV9lChoBmgJaA9DCO0PlNv2oW9AlIaUUpRoFUvlaBZHQJnGaDHwPRR1fZQoaAZoCWgPQwjqspjYfHJxQJSGlFKUaBVNSAFoFkdAmca/njhky3V9lChoBmgJaA9DCL6kMVpHi3BAlIaUUpRoFUvoaBZHQJnHI/r0J4V1fZQoaAZoCWgPQwhKmj+mdbVxQJSGlFKUaBVL0mgWR0CZxz6a9bosdX2UKGgGaAloD0MI+MPPf08WcECUhpRSlGgVTQgBaBZHQJnLm85CF9N1fZQoaAZoCWgPQwiJQsu6f9dtQJSGlFKUaBVL3GgWR0CZy8V4HHFQdX2UKGgGaAloD0MIJsRcUrUMcECUhpRSlGgVS9RoFkdAmcxEGNaQm3V9lChoBmgJaA9DCKCkwAIYnG5AlIaUUpRoFUvQaBZHQJnOinn+yZ91fZQoaAZoCWgPQwi/RpIgHJ1xQJSGlFKUaBVL0GgWR0CZz/zErGzbdX2UKGgGaAloD0MIYwrWONt8cECUhpRSlGgVTQYBaBZHQJnTIazeGfx1fZQoaAZoCWgPQwhJZB9k2aJgQJSGlFKUaBVN6ANoFkdAmdO3DiwSrnV9lChoBmgJaA9DCDtVvmek9nFAlIaUUpRoFU07AWgWR0CZ1TV/tpmFdX2UKGgGaAloD0MI6s4Tz1kgb0CUhpRSlGgVTWkBaBZHQJnVM14xDb91fZQoaAZoCWgPQwgl63B0VSFyQJSGlFKUaBVL8GgWR0CZ1fdilSCOdX2UKGgGaAloD0MIdVq3Qe2sb0CUhpRSlGgVTagBaBZHQJnYHMINVip1fZQoaAZoCWgPQwgT7wBPWixzQJSGlFKUaBVNKAFoFkdAmdh67ZnL73V9lChoBmgJaA9DCKHXn8QnCXFAlIaUUpRoFUv2aBZHQJnZRd5Y5kt1fZQoaAZoCWgPQwh7ouvCj0RwQJSGlFKUaBVNLgFoFkdAmdlQEhaC+XV9lChoBmgJaA9DCEd3EDtTrHNAlIaUUpRoFUvraBZHQJnaQQg9vCN1fZQoaAZoCWgPQwgfgT/8fC1hQJSGlFKUaBVN6ANoFkdAmds48IRh+nV9lChoBmgJaA9DCBtjJ7yEsW5AlIaUUpRoFUvVaBZHQJnb7+ERJ3B1fZQoaAZoCWgPQwhklj0J7MprQJSGlFKUaBVN5QNoFkdAmdytCRfWtnV9lChoBmgJaA9DCEuRfCUQoWBAlIaUUpRoFU3oA2gWR0CZ3SkIHC40dX2UKGgGaAloD0MIVHJO7GFLcECUhpRSlGgVS81oFkdAmd1Fn27FsHV9lChoBmgJaA9DCIMwt3u5hUNAlIaUUpRoFUvaaBZHQJndtnbqQil1fZQoaAZoCWgPQwh7gsR2d0puQJSGlFKUaBVNMgFoFkdAmd+e49X9znV9lChoBmgJaA9DCIWy8PX1KHNAlIaUUpRoFUvkaBZHQJngfe3x4IN1fZQoaAZoCWgPQwjEmV/NwYVxQJSGlFKUaBVL7GgWR0CZ4RdnCfpVdX2UKGgGaAloD0MI2PLK9TYrckCUhpRSlGgVTTYBaBZHQJnhkumJm/Z1fZQoaAZoCWgPQwjfN772zDpvQJSGlFKUaBVL8GgWR0CZ4ey0rsjWdX2UKGgGaAloD0MIZ5lFKHaccUCUhpRSlGgVS+hoFkdAmeJ+OCGvfXV9lChoBmgJaA9DCIeGxairfnFAlIaUUpRoFU0cAWgWR0CZ424CIUJwdX2UKGgGaAloD0MI96+sNKljbUCUhpRSlGgVS99oFkdAmeRxubZvk3V9lChoBmgJaA9DCPRRRlwAkm1AlIaUUpRoFUvRaBZHQJnkkUfxMFl1fZQoaAZoCWgPQwiHwmfr4OFwQJSGlFKUaBVNIQFoFkdAmeYZ66asqHV9lChoBmgJaA9DCP5F0JhJq3BAlIaUUpRoFUvaaBZHQJnnXCQ9zOp1fZQoaAZoCWgPQwgKuyh64CFaQJSGlFKUaBVN6ANoFkdAmeeYYWLxZ3V9lChoBmgJaA9DCJAQ5Qsa6HBAlIaUUpRoFU00AWgWR0CZ6AAH3UQTdX2UKGgGaAloD0MIYRvxZLf4cECUhpRSlGgVS95oFkdAmelWc8TzunV9lChoBmgJaA9DCJn1YiinyG5AlIaUUpRoFUvlaBZHQJnp8uVX3g11fZQoaAZoCWgPQwjbi2g7ptZuQJSGlFKUaBVL1mgWR0CZ6wbx3FDOdX2UKGgGaAloD0MI+YOB514ibkCUhpRSlGgVTTcBaBZHQJnrdfTkQwt1fZQoaAZoCWgPQwjUt8zpcrBxQJSGlFKUaBVNKwFoFkdAmeug8r7O3XV9lChoBmgJaA9DCNWVz/K8Fm9AlIaUUpRoFUvUaBZHQJnsJpztCzF1fZQoaAZoCWgPQwj1udqK/RliQJSGlFKUaBVN6ANoFkdAme1AGwA2h3V9lChoBmgJaA9DCIQpyqVxqnBAlIaUUpRoFUv3aBZHQJntSofjjrB1fZQoaAZoCWgPQwhjmBO0yXpfQJSGlFKUaBVN6ANoFkdAme6eJLuhK3V9lChoBmgJaA9DCEuUvaXcunBAlIaUUpRoFU0NAWgWR0CZ77y5I6KcdX2UKGgGaAloD0MIBduIJ7tfcUCUhpRSlGgVS85oFkdAmfDCrYGt63V9lChoBmgJaA9DCEbu6eqOTnBAlIaUUpRoFU1qAmgWR0CZ8SVNHpbEdWUu"
74
  },
75
  "ep_success_buffer": {
76
  ":type:": "<class 'collections.deque'>",
 
80
  "n_steps": 2048,
81
  "gamma": 0.99,
82
  "gae_lambda": 0.95,
83
+ "ent_coef": 0.01,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
87
  "n_epochs": 10,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
  },
92
  "clip_range_vf": null,
93
  "normalize_advantage": true,
lunar_ppo_default_steps_1E6/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:46522819db6311d17c4bb6c2f63718ead4180eefa367acc54a1bd76c04a56127
3
  size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d8f74f0281bc7f3c37800a9efa0c29e007abc1aa5876e54b053c98de9d7a93b
3
  size 87929
lunar_ppo_default_steps_1E6/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e71d89eaf341088bc062ff6f5f1ce6aef4fa79019bb0c4216d310b18ac361378
3
- size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ac1a1c31b2aa62e5838c0c74c0ae82d2d969b9660f95388edce742a34d66deb
3
+ size 43393
lunar_ppo_default_steps_1E6/system_info.txt CHANGED
@@ -1,7 +1,7 @@
1
- OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
2
- Python: 3.8.16
3
- Stable-Baselines3: 1.6.2
4
- PyTorch: 1.13.0+cu116
5
- GPU Enabled: True
6
- Numpy: 1.21.6
7
- Gym: 0.21.0
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 228.20250459775548, "std_reward": 57.53748040744918, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-07T11:41:00.579747"}
 
1
+ {"mean_reward": 252.21665187506056, "std_reward": 43.78689318757307, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-19T16:25:42.581601"}