Porridge9243 commited on
Commit
8a48844
·
1 Parent(s): 474f71a

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -5.01 +/- 0.91
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9bb9ef564703ea6f03c256169205df2c411ac0b9c99098aadec4eeddc638b8cf
3
+ size 107987
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7faa83525c10>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7faa83528210>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1675002519251151375,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAt8nlPh6rQz254So/t8nlPh6rQz254So/t8nlPh6rQz254So/t8nlPh6rQz254So/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAU4zIP+/xub+9cty/jnCmv+VG2L81f7s+UT+4v3YLuj5Nd44/ZG66PgqUZr7xFis/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC3yeU+HqtDPbnhKj/u44Q8PLKRO7dpzDy3yeU+HqtDPbnhKj/u44Q8PLKRO7dpzDy3yeU+HqtDPbnhKj/u44Q8PLKRO7dpzDy3yeU+HqtDPbnhKj/u44Q8PLKRO7dpzDyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.4488046 0.04777061 0.66750675]\n [0.4488046 0.04777061 0.66750675]\n [0.4488046 0.04777061 0.66750675]\n [0.4488046 0.04777061 0.66750675]]",
60
+ "desired_goal": "[[ 1.5667824 -1.4526957 -1.7222515 ]\n [-1.3003099 -1.6896635 0.3662049 ]\n [-1.4394323 0.3633687 1.1130158 ]\n [ 0.36412346 -0.2251741 0.6683188 ]]",
61
+ "observation": "[[0.4488046 0.04777061 0.66750675 0.01622197 0.0044463 0.02495275]\n [0.4488046 0.04777061 0.66750675 0.01622197 0.0044463 0.02495275]\n [0.4488046 0.04777061 0.66750675 0.01622197 0.0044463 0.02495275]\n [0.4488046 0.04777061 0.66750675 0.01622197 0.0044463 0.02495275]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAmpOyPbwcGjvSZoM+2FKjuoaCgr3E0Zc+ZHGhPee5kj2hGDc8iAdFPVxmGL4IBH87lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.08719559 0.00235157 0.25664383]\n [-0.00124606 -0.06372552 0.29652226]\n [ 0.07882956 0.07164364 0.01117531]\n [ 0.04810289 -0.14882797 0.00389123]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMINZcbDHUIF8CUhpRSlIwBbJRLMowBdJRHQKPo3lPJq7B1fZQoaAZoCWgPQwi7D0BqE7cXwJSGlFKUaBVLMmgWR0Cj6KKdQO4HdX2UKGgGaAloD0MISE4mbhWEEsCUhpRSlGgVSzJoFkdAo+hg0ALiM3V9lChoBmgJaA9DCLAApgwcQBbAlIaUUpRoFUsyaBZHQKPoGWWQfZF1fZQoaAZoCWgPQwiJmBJJ9BIMwJSGlFKUaBVLMmgWR0Cj6cRWLgn/dX2UKGgGaAloD0MIjJ5b6ErED8CUhpRSlGgVSzJoFkdAo+mIk1Mue3V9lChoBmgJaA9DCOwUqwZh7hbAlIaUUpRoFUsyaBZHQKPpRsiSq2l1fZQoaAZoCWgPQwiLM4Y5QVsTwJSGlFKUaBVLMmgWR0Cj6P8kt29tdX2UKGgGaAloD0MI6q9XWHC/DsCUhpRSlGgVSzJoFkdAo+rJ2bG3nnV9lChoBmgJaA9DCEurIXGPRRHAlIaUUpRoFUsyaBZHQKPqjk9U0el1fZQoaAZoCWgPQwjgEoB/SrUPwJSGlFKUaBVLMmgWR0Cj6kyThYNidX2UKGgGaAloD0MITg00n3PHEcCUhpRSlGgVSzJoFkdAo+oFaSs8xXV9lChoBmgJaA9DCAA49uy5HCDAlIaUUpRoFUsyaBZHQKPruf4AS391fZQoaAZoCWgPQwgep+hILg8SwJSGlFKUaBVLMmgWR0Cj635T6zmfdX2UKGgGaAloD0MIUU8fgT9sE8CUhpRSlGgVSzJoFkdAo+s8qpcX33V9lChoBmgJaA9DCN+Mmq+SjxDAlIaUUpRoFUsyaBZHQKPq9Z9NN8F1fZQoaAZoCWgPQwiuDoC4q0cQwJSGlFKUaBVLMmgWR0Cj7LYeT3ZgdX2UKGgGaAloD0MIPWU1XU8UGMCUhpRSlGgVSzJoFkdAo+x6Wom5UnV9lChoBmgJaA9DCLfwvFRsfBbAlIaUUpRoFUsyaBZHQKPsOJN0vGp1fZQoaAZoCWgPQwiARBMoYvELwJSGlFKUaBVLMmgWR0Cj6/F0HQhPdX2UKGgGaAloD0MIP8iyYOK/FsCUhpRSlGgVSzJoFkdAo+210PpY93V9lChoBmgJaA9DCDVCP1Ov2xfAlIaUUpRoFUsyaBZHQKPtejHGS6l1fZQoaAZoCWgPQwjKh6Bq9MoIwJSGlFKUaBVLMmgWR0Cj7Ti+De0pdX2UKGgGaAloD0MIM2spIO2vGsCUhpRSlGgVSzJoFkdAo+zxfF72MHV9lChoBmgJaA9DCCkjLgCNsgvAlIaUUpRoFUsyaBZHQKPurNi6QNl1fZQoaAZoCWgPQwiYF2AfnUoXwJSGlFKUaBVLMmgWR0Cj7nEofCAMdX2UKGgGaAloD0MInPnVHCCoFsCUhpRSlGgVSzJoFkdAo+4vT5O8CnV9lChoBmgJaA9DCHocBvNXKA3AlIaUUpRoFUsyaBZHQKPt558BuGd1fZQoaAZoCWgPQwjJx+4CJRUawJSGlFKUaBVLMmgWR0Cj74uoP07KdX2UKGgGaAloD0MImDWxwFdUEsCUhpRSlGgVSzJoFkdAo+9P5xiobXV9lChoBmgJaA9DCNl22hoRPBHAlIaUUpRoFUsyaBZHQKPvDg3tKI11fZQoaAZoCWgPQwgykdJsHqcSwJSGlFKUaBVLMmgWR0Cj7sZiVjZtdX2UKGgGaAloD0MIn5PeN742D8CUhpRSlGgVSzJoFkdAo/B78k2P1nV9lChoBmgJaA9DCAXc8/xpcxTAlIaUUpRoFUsyaBZHQKPwQCmuTzN1fZQoaAZoCWgPQwjNrKWAtP8QwJSGlFKUaBVLMmgWR0Cj7/5GSZBtdX2UKGgGaAloD0MI0t9L4UHzEMCUhpRSlGgVSzJoFkdAo++2hsZYP3V9lChoBmgJaA9DCHh6pSxDfBXAlIaUUpRoFUsyaBZHQKPxa3EQ5FR1fZQoaAZoCWgPQwhJ2o0+5kMNwJSGlFKUaBVLMmgWR0Cj8S+g+QlsdX2UKGgGaAloD0MI5ZfBGJFYFMCUhpRSlGgVSzJoFkdAo/DtyJbdJ3V9lChoBmgJaA9DCEEsmzkkZRjAlIaUUpRoFUsyaBZHQKPwpr2QGOd1fZQoaAZoCWgPQwiNlgM91MYQwJSGlFKUaBVLMmgWR0Cj8mP5HmRvdX2UKGgGaAloD0MIY7Mj1XfeFMCUhpRSlGgVSzJoFkdAo/IoPRRdhXV9lChoBmgJaA9DCOiE0EGXwBHAlIaUUpRoFUsyaBZHQKPx5z/ZM+N1fZQoaAZoCWgPQwhKfsSvWPMbwJSGlFKUaBVLMmgWR0Cj8aBt+CsfdX2UKGgGaAloD0MIqiwKuyhKE8CUhpRSlGgVSzJoFkdAo/NgoXsPa3V9lChoBmgJaA9DCNm0UgjkshLAlIaUUpRoFUsyaBZHQKPzJNqxkd51fZQoaAZoCWgPQwg+6Nms+lwHwJSGlFKUaBVLMmgWR0Cj8uOPmxMWdX2UKGgGaAloD0MIbqetEcHYFMCUhpRSlGgVSzJoFkdAo/KcCo0hvHV9lChoBmgJaA9DCC6SdqOPmQ/AlIaUUpRoFUsyaBZHQKP0Q9jgAIZ1fZQoaAZoCWgPQwi7C5QUWNAXwJSGlFKUaBVLMmgWR0Cj9AgTqSowdX2UKGgGaAloD0MI5BQdyeVfEcCUhpRSlGgVSzJoFkdAo/PGMAFPi3V9lChoBmgJaA9DCLAD54woLQ7AlIaUUpRoFUsyaBZHQKPzfn13+uN1fZQoaAZoCWgPQwgYPiKmRBIKwJSGlFKUaBVLMmgWR0Cj9UIxQBPsdX2UKGgGaAloD0MIwsJJmj8WEMCUhpRSlGgVSzJoFkdAo/UGYtxuK3V9lChoBmgJaA9DCGTo2EEljhXAlIaUUpRoFUsyaBZHQKP0xIpYs/Z1fZQoaAZoCWgPQwi7Cb5p+owCwJSGlFKUaBVLMmgWR0Cj9H0cXFcZdX2UKGgGaAloD0MIBvUtc7rcEcCUhpRSlGgVSzJoFkdAo/YhrxiG4HV9lChoBmgJaA9DCH0lkBK75hHAlIaUUpRoFUsyaBZHQKP15fBvaUR1fZQoaAZoCWgPQwgBofXwZeIUwJSGlFKUaBVLMmgWR0Cj9aRDCxeLdX2UKGgGaAloD0MIGD+Ne/P7EMCUhpRSlGgVSzJoFkdAo/Vc0+C9RXV9lChoBmgJaA9DCBKEK6BQDwvAlIaUUpRoFUsyaBZHQKP3FWz4UN91fZQoaAZoCWgPQwgz+zxGeWYRwJSGlFKUaBVLMmgWR0Cj9tmvnr6ddX2UKGgGaAloD0MIOPWB5J1DFcCUhpRSlGgVSzJoFkdAo/aX2K2rn3V9lChoBmgJaA9DCOS8/48TZhHAlIaUUpRoFUsyaBZHQKP2UC4Bmwt1fZQoaAZoCWgPQwh6GFqdnFESwJSGlFKUaBVLMmgWR0Cj9/nFxXGPdX2UKGgGaAloD0MIZ9R8lXwcGMCUhpRSlGgVSzJoFkdAo/e+CbtqpXV9lChoBmgJaA9DCB+F61G4vg/AlIaUUpRoFUsyaBZHQKP3fDrqt5l1fZQoaAZoCWgPQwjH8xlQb/YUwJSGlFKUaBVLMmgWR0Cj9zR/ustDdX2UKGgGaAloD0MIgjY5fNIpCsCUhpRSlGgVSzJoFkdAo/jwIjW07nV9lChoBmgJaA9DCIUn9PqTiBHAlIaUUpRoFUsyaBZHQKP4tF3IMjN1fZQoaAZoCWgPQwgT04VY/ZEOwJSGlFKUaBVLMmgWR0Cj+HK8lHBldX2UKGgGaAloD0MIqJAr9SwoCMCUhpRSlGgVSzJoFkdAo/grH4oJA3V9lChoBmgJaA9DCDM334ju2QTAlIaUUpRoFUsyaBZHQKP50YPXkHV1fZQoaAZoCWgPQwhFSUikbXwdwJSGlFKUaBVLMmgWR0Cj+ZWszVMFdX2UKGgGaAloD0MI275H/fWaGsCUhpRSlGgVSzJoFkdAo/lTy6MBIXV9lChoBmgJaA9DCJAy4gLQKBvAlIaUUpRoFUsyaBZHQKP5C/Y8Md91fZQoaAZoCWgPQwhBYrt7gI4NwJSGlFKUaBVLMmgWR0Cj+rl4C6pYdX2UKGgGaAloD0MIsvUM4ZhVE8CUhpRSlGgVSzJoFkdAo/p9svZh8nV9lChoBmgJaA9DCIjWijbHWRzAlIaUUpRoFUsyaBZHQKP6O9ic5Kh1fZQoaAZoCWgPQwhgHccPlbYWwJSGlFKUaBVLMmgWR0Cj+fQUpNKzdX2UKGgGaAloD0MI7iQi/IswF8CUhpRSlGgVSzJoFkdAo/ukLUkOZ3V9lChoBmgJaA9DCD230JUI9BPAlIaUUpRoFUsyaBZHQKP7aF6iTMd1fZQoaAZoCWgPQwiSO2wiMxcZwJSGlFKUaBVLMmgWR0Cj+yag/TsqdX2UKGgGaAloD0MI2nBYGvixD8CUhpRSlGgVSzJoFkdAo/rfgtOEd3V9lChoBmgJaA9DCGJLj6Z6shnAlIaUUpRoFUsyaBZHQKP8k88s+V11fZQoaAZoCWgPQwgOSphp+xcTwJSGlFKUaBVLMmgWR0Cj/FhfrrxBdX2UKGgGaAloD0MI9FKxMa9DE8CUhpRSlGgVSzJoFkdAo/wWqHXVb3V9lChoBmgJaA9DCGueI/JdShDAlIaUUpRoFUsyaBZHQKP7zuWKMvR1fZQoaAZoCWgPQwgyqgzjbuAUwJSGlFKUaBVLMmgWR0Cj/XWQ4jrzdX2UKGgGaAloD0MILuQR3EgZEMCUhpRSlGgVSzJoFkdAo/056hQFcXV9lChoBmgJaA9DCOBlho2yvg3AlIaUUpRoFUsyaBZHQKP8+CHymQ91fZQoaAZoCWgPQwiKPEm6ZkISwJSGlFKUaBVLMmgWR0Cj/LBt+CsfdX2UKGgGaAloD0MI6pRHN8IyGMCUhpRSlGgVSzJoFkdAo/5kxj8UEnV9lChoBmgJaA9DCAmH3uLhvQ/AlIaUUpRoFUsyaBZHQKP+KRqXWvt1fZQoaAZoCWgPQwgbEvdY+gAQwJSGlFKUaBVLMmgWR0Cj/eenyd4FdX2UKGgGaAloD0MI32sIjsuoF8CUhpRSlGgVSzJoFkdAo/2f7YTTOXV9lChoBmgJaA9DCGsPe6GADQrAlIaUUpRoFUsyaBZHQKP/VqBVdX11fZQoaAZoCWgPQwh5WRMLfLUVwJSGlFKUaBVLMmgWR0Cj/xrWqcVhdX2UKGgGaAloD0MIA0NWt3o+HcCUhpRSlGgVSzJoFkdAo/7Y/eLvTnV9lChoBmgJaA9DCL+36c9+RA7AlIaUUpRoFUsyaBZHQKP+kUkfLcN1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e56427ce685d553088142b302d0cb956193be26d817c61e936bd02501878c4bc
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7653ee149f3dbe0e8c33733401c8029d0d711b004fb0fb2d96bb420140e4860b
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7faa83525c10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7faa83528210>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675002519251151375, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAt8nlPh6rQz254So/t8nlPh6rQz254So/t8nlPh6rQz254So/t8nlPh6rQz254So/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAU4zIP+/xub+9cty/jnCmv+VG2L81f7s+UT+4v3YLuj5Nd44/ZG66PgqUZr7xFis/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC3yeU+HqtDPbnhKj/u44Q8PLKRO7dpzDy3yeU+HqtDPbnhKj/u44Q8PLKRO7dpzDy3yeU+HqtDPbnhKj/u44Q8PLKRO7dpzDy3yeU+HqtDPbnhKj/u44Q8PLKRO7dpzDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4488046 0.04777061 0.66750675]\n [0.4488046 0.04777061 0.66750675]\n [0.4488046 0.04777061 0.66750675]\n [0.4488046 0.04777061 0.66750675]]", "desired_goal": "[[ 1.5667824 -1.4526957 -1.7222515 ]\n [-1.3003099 -1.6896635 0.3662049 ]\n [-1.4394323 0.3633687 1.1130158 ]\n [ 0.36412346 -0.2251741 0.6683188 ]]", "observation": "[[0.4488046 0.04777061 0.66750675 0.01622197 0.0044463 0.02495275]\n [0.4488046 0.04777061 0.66750675 0.01622197 0.0044463 0.02495275]\n [0.4488046 0.04777061 0.66750675 0.01622197 0.0044463 0.02495275]\n [0.4488046 0.04777061 0.66750675 0.01622197 0.0044463 0.02495275]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAmpOyPbwcGjvSZoM+2FKjuoaCgr3E0Zc+ZHGhPee5kj2hGDc8iAdFPVxmGL4IBH87lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.08719559 0.00235157 0.25664383]\n [-0.00124606 -0.06372552 0.29652226]\n [ 0.07882956 0.07164364 0.01117531]\n [ 0.04810289 -0.14882797 0.00389123]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMINZcbDHUIF8CUhpRSlIwBbJRLMowBdJRHQKPo3lPJq7B1fZQoaAZoCWgPQwi7D0BqE7cXwJSGlFKUaBVLMmgWR0Cj6KKdQO4HdX2UKGgGaAloD0MISE4mbhWEEsCUhpRSlGgVSzJoFkdAo+hg0ALiM3V9lChoBmgJaA9DCLAApgwcQBbAlIaUUpRoFUsyaBZHQKPoGWWQfZF1fZQoaAZoCWgPQwiJmBJJ9BIMwJSGlFKUaBVLMmgWR0Cj6cRWLgn/dX2UKGgGaAloD0MIjJ5b6ErED8CUhpRSlGgVSzJoFkdAo+mIk1Mue3V9lChoBmgJaA9DCOwUqwZh7hbAlIaUUpRoFUsyaBZHQKPpRsiSq2l1fZQoaAZoCWgPQwiLM4Y5QVsTwJSGlFKUaBVLMmgWR0Cj6P8kt29tdX2UKGgGaAloD0MI6q9XWHC/DsCUhpRSlGgVSzJoFkdAo+rJ2bG3nnV9lChoBmgJaA9DCEurIXGPRRHAlIaUUpRoFUsyaBZHQKPqjk9U0el1fZQoaAZoCWgPQwjgEoB/SrUPwJSGlFKUaBVLMmgWR0Cj6kyThYNidX2UKGgGaAloD0MITg00n3PHEcCUhpRSlGgVSzJoFkdAo+oFaSs8xXV9lChoBmgJaA9DCAA49uy5HCDAlIaUUpRoFUsyaBZHQKPruf4AS391fZQoaAZoCWgPQwgep+hILg8SwJSGlFKUaBVLMmgWR0Cj635T6zmfdX2UKGgGaAloD0MIUU8fgT9sE8CUhpRSlGgVSzJoFkdAo+s8qpcX33V9lChoBmgJaA9DCN+Mmq+SjxDAlIaUUpRoFUsyaBZHQKPq9Z9NN8F1fZQoaAZoCWgPQwiuDoC4q0cQwJSGlFKUaBVLMmgWR0Cj7LYeT3ZgdX2UKGgGaAloD0MIPWU1XU8UGMCUhpRSlGgVSzJoFkdAo+x6Wom5UnV9lChoBmgJaA9DCLfwvFRsfBbAlIaUUpRoFUsyaBZHQKPsOJN0vGp1fZQoaAZoCWgPQwiARBMoYvELwJSGlFKUaBVLMmgWR0Cj6/F0HQhPdX2UKGgGaAloD0MIP8iyYOK/FsCUhpRSlGgVSzJoFkdAo+210PpY93V9lChoBmgJaA9DCDVCP1Ov2xfAlIaUUpRoFUsyaBZHQKPtejHGS6l1fZQoaAZoCWgPQwjKh6Bq9MoIwJSGlFKUaBVLMmgWR0Cj7Ti+De0pdX2UKGgGaAloD0MIM2spIO2vGsCUhpRSlGgVSzJoFkdAo+zxfF72MHV9lChoBmgJaA9DCCkjLgCNsgvAlIaUUpRoFUsyaBZHQKPurNi6QNl1fZQoaAZoCWgPQwiYF2AfnUoXwJSGlFKUaBVLMmgWR0Cj7nEofCAMdX2UKGgGaAloD0MInPnVHCCoFsCUhpRSlGgVSzJoFkdAo+4vT5O8CnV9lChoBmgJaA9DCHocBvNXKA3AlIaUUpRoFUsyaBZHQKPt558BuGd1fZQoaAZoCWgPQwjJx+4CJRUawJSGlFKUaBVLMmgWR0Cj74uoP07KdX2UKGgGaAloD0MImDWxwFdUEsCUhpRSlGgVSzJoFkdAo+9P5xiobXV9lChoBmgJaA9DCNl22hoRPBHAlIaUUpRoFUsyaBZHQKPvDg3tKI11fZQoaAZoCWgPQwgykdJsHqcSwJSGlFKUaBVLMmgWR0Cj7sZiVjZtdX2UKGgGaAloD0MIn5PeN742D8CUhpRSlGgVSzJoFkdAo/B78k2P1nV9lChoBmgJaA9DCAXc8/xpcxTAlIaUUpRoFUsyaBZHQKPwQCmuTzN1fZQoaAZoCWgPQwjNrKWAtP8QwJSGlFKUaBVLMmgWR0Cj7/5GSZBtdX2UKGgGaAloD0MI0t9L4UHzEMCUhpRSlGgVSzJoFkdAo++2hsZYP3V9lChoBmgJaA9DCHh6pSxDfBXAlIaUUpRoFUsyaBZHQKPxa3EQ5FR1fZQoaAZoCWgPQwhJ2o0+5kMNwJSGlFKUaBVLMmgWR0Cj8S+g+QlsdX2UKGgGaAloD0MI5ZfBGJFYFMCUhpRSlGgVSzJoFkdAo/DtyJbdJ3V9lChoBmgJaA9DCEEsmzkkZRjAlIaUUpRoFUsyaBZHQKPwpr2QGOd1fZQoaAZoCWgPQwiNlgM91MYQwJSGlFKUaBVLMmgWR0Cj8mP5HmRvdX2UKGgGaAloD0MIY7Mj1XfeFMCUhpRSlGgVSzJoFkdAo/IoPRRdhXV9lChoBmgJaA9DCOiE0EGXwBHAlIaUUpRoFUsyaBZHQKPx5z/ZM+N1fZQoaAZoCWgPQwhKfsSvWPMbwJSGlFKUaBVLMmgWR0Cj8aBt+CsfdX2UKGgGaAloD0MIqiwKuyhKE8CUhpRSlGgVSzJoFkdAo/NgoXsPa3V9lChoBmgJaA9DCNm0UgjkshLAlIaUUpRoFUsyaBZHQKPzJNqxkd51fZQoaAZoCWgPQwg+6Nms+lwHwJSGlFKUaBVLMmgWR0Cj8uOPmxMWdX2UKGgGaAloD0MIbqetEcHYFMCUhpRSlGgVSzJoFkdAo/KcCo0hvHV9lChoBmgJaA9DCC6SdqOPmQ/AlIaUUpRoFUsyaBZHQKP0Q9jgAIZ1fZQoaAZoCWgPQwi7C5QUWNAXwJSGlFKUaBVLMmgWR0Cj9AgTqSowdX2UKGgGaAloD0MI5BQdyeVfEcCUhpRSlGgVSzJoFkdAo/PGMAFPi3V9lChoBmgJaA9DCLAD54woLQ7AlIaUUpRoFUsyaBZHQKPzfn13+uN1fZQoaAZoCWgPQwgYPiKmRBIKwJSGlFKUaBVLMmgWR0Cj9UIxQBPsdX2UKGgGaAloD0MIwsJJmj8WEMCUhpRSlGgVSzJoFkdAo/UGYtxuK3V9lChoBmgJaA9DCGTo2EEljhXAlIaUUpRoFUsyaBZHQKP0xIpYs/Z1fZQoaAZoCWgPQwi7Cb5p+owCwJSGlFKUaBVLMmgWR0Cj9H0cXFcZdX2UKGgGaAloD0MIBvUtc7rcEcCUhpRSlGgVSzJoFkdAo/YhrxiG4HV9lChoBmgJaA9DCH0lkBK75hHAlIaUUpRoFUsyaBZHQKP15fBvaUR1fZQoaAZoCWgPQwgBofXwZeIUwJSGlFKUaBVLMmgWR0Cj9aRDCxeLdX2UKGgGaAloD0MIGD+Ne/P7EMCUhpRSlGgVSzJoFkdAo/Vc0+C9RXV9lChoBmgJaA9DCBKEK6BQDwvAlIaUUpRoFUsyaBZHQKP3FWz4UN91fZQoaAZoCWgPQwgz+zxGeWYRwJSGlFKUaBVLMmgWR0Cj9tmvnr6ddX2UKGgGaAloD0MIOPWB5J1DFcCUhpRSlGgVSzJoFkdAo/aX2K2rn3V9lChoBmgJaA9DCOS8/48TZhHAlIaUUpRoFUsyaBZHQKP2UC4Bmwt1fZQoaAZoCWgPQwh6GFqdnFESwJSGlFKUaBVLMmgWR0Cj9/nFxXGPdX2UKGgGaAloD0MIZ9R8lXwcGMCUhpRSlGgVSzJoFkdAo/e+CbtqpXV9lChoBmgJaA9DCB+F61G4vg/AlIaUUpRoFUsyaBZHQKP3fDrqt5l1fZQoaAZoCWgPQwjH8xlQb/YUwJSGlFKUaBVLMmgWR0Cj9zR/ustDdX2UKGgGaAloD0MIgjY5fNIpCsCUhpRSlGgVSzJoFkdAo/jwIjW07nV9lChoBmgJaA9DCIUn9PqTiBHAlIaUUpRoFUsyaBZHQKP4tF3IMjN1fZQoaAZoCWgPQwgT04VY/ZEOwJSGlFKUaBVLMmgWR0Cj+HK8lHBldX2UKGgGaAloD0MIqJAr9SwoCMCUhpRSlGgVSzJoFkdAo/grH4oJA3V9lChoBmgJaA9DCDM334ju2QTAlIaUUpRoFUsyaBZHQKP50YPXkHV1fZQoaAZoCWgPQwhFSUikbXwdwJSGlFKUaBVLMmgWR0Cj+ZWszVMFdX2UKGgGaAloD0MI275H/fWaGsCUhpRSlGgVSzJoFkdAo/lTy6MBIXV9lChoBmgJaA9DCJAy4gLQKBvAlIaUUpRoFUsyaBZHQKP5C/Y8Md91fZQoaAZoCWgPQwhBYrt7gI4NwJSGlFKUaBVLMmgWR0Cj+rl4C6pYdX2UKGgGaAloD0MIsvUM4ZhVE8CUhpRSlGgVSzJoFkdAo/p9svZh8nV9lChoBmgJaA9DCIjWijbHWRzAlIaUUpRoFUsyaBZHQKP6O9ic5Kh1fZQoaAZoCWgPQwhgHccPlbYWwJSGlFKUaBVLMmgWR0Cj+fQUpNKzdX2UKGgGaAloD0MI7iQi/IswF8CUhpRSlGgVSzJoFkdAo/ukLUkOZ3V9lChoBmgJaA9DCD230JUI9BPAlIaUUpRoFUsyaBZHQKP7aF6iTMd1fZQoaAZoCWgPQwiSO2wiMxcZwJSGlFKUaBVLMmgWR0Cj+yag/TsqdX2UKGgGaAloD0MI2nBYGvixD8CUhpRSlGgVSzJoFkdAo/rfgtOEd3V9lChoBmgJaA9DCGJLj6Z6shnAlIaUUpRoFUsyaBZHQKP8k88s+V11fZQoaAZoCWgPQwgOSphp+xcTwJSGlFKUaBVLMmgWR0Cj/FhfrrxBdX2UKGgGaAloD0MI9FKxMa9DE8CUhpRSlGgVSzJoFkdAo/wWqHXVb3V9lChoBmgJaA9DCGueI/JdShDAlIaUUpRoFUsyaBZHQKP7zuWKMvR1fZQoaAZoCWgPQwgyqgzjbuAUwJSGlFKUaBVLMmgWR0Cj/XWQ4jrzdX2UKGgGaAloD0MILuQR3EgZEMCUhpRSlGgVSzJoFkdAo/056hQFcXV9lChoBmgJaA9DCOBlho2yvg3AlIaUUpRoFUsyaBZHQKP8+CHymQ91fZQoaAZoCWgPQwiKPEm6ZkISwJSGlFKUaBVLMmgWR0Cj/LBt+CsfdX2UKGgGaAloD0MI6pRHN8IyGMCUhpRSlGgVSzJoFkdAo/5kxj8UEnV9lChoBmgJaA9DCAmH3uLhvQ/AlIaUUpRoFUsyaBZHQKP+KRqXWvt1fZQoaAZoCWgPQwgbEvdY+gAQwJSGlFKUaBVLMmgWR0Cj/eenyd4FdX2UKGgGaAloD0MI32sIjsuoF8CUhpRSlGgVSzJoFkdAo/2f7YTTOXV9lChoBmgJaA9DCGsPe6GADQrAlIaUUpRoFUsyaBZHQKP/VqBVdX11fZQoaAZoCWgPQwh5WRMLfLUVwJSGlFKUaBVLMmgWR0Cj/xrWqcVhdX2UKGgGaAloD0MIA0NWt3o+HcCUhpRSlGgVSzJoFkdAo/7Y/eLvTnV9lChoBmgJaA9DCL+36c9+RA7AlIaUUpRoFUsyaBZHQKP+kUkfLcN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (871 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -5.014849668368697, "std_reward": 0.9084406736341261, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-29T15:18:17.849165"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:805f6ea9599693ddb3f15fcdfa13b17f5dfe9ac637275eb079f16ad1818241f2
3
+ size 3056