End of training
Browse files
README.md
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
metrics:
|
@@ -9,22 +10,22 @@ metrics:
|
|
9 |
- precision
|
10 |
- recall
|
11 |
model-index:
|
12 |
-
- name: bert-base-
|
13 |
results: []
|
14 |
---
|
15 |
|
16 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
should probably proofread and complete it, then remove this comment. -->
|
18 |
|
19 |
-
# bert-base-
|
20 |
|
21 |
-
This model is a fine-tuned version of [
|
22 |
It achieves the following results on the evaluation set:
|
23 |
-
- Loss: 2.
|
24 |
-
- Accuracy: 0.
|
25 |
-
- F1: 0.
|
26 |
-
- Precision: 0.
|
27 |
-
- Recall: 0.
|
28 |
|
29 |
## Model description
|
30 |
|
@@ -56,16 +57,16 @@ The following hyperparameters were used during training:
|
|
56 |
|
57 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
58 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
59 |
-
| 2.
|
60 |
-
| 2.
|
61 |
-
| 2.
|
62 |
-
| 2.
|
63 |
-
| 2.
|
64 |
-
| 2.
|
65 |
-
| 2.
|
66 |
-
| 2.
|
67 |
-
| 2.
|
68 |
-
| 2.
|
69 |
|
70 |
|
71 |
### Framework versions
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: google-bert/bert-base-uncased
|
5 |
tags:
|
6 |
- generated_from_trainer
|
7 |
metrics:
|
|
|
10 |
- precision
|
11 |
- recall
|
12 |
model-index:
|
13 |
+
- name: bert-base-uncased-intent-booking
|
14 |
results: []
|
15 |
---
|
16 |
|
17 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
should probably proofread and complete it, then remove this comment. -->
|
19 |
|
20 |
+
# bert-base-uncased-intent-booking
|
21 |
|
22 |
+
This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset.
|
23 |
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 2.1507
|
25 |
+
- Accuracy: 0.1937
|
26 |
+
- F1: 0.1640
|
27 |
+
- Precision: 0.2456
|
28 |
+
- Recall: 0.1937
|
29 |
|
30 |
## Model description
|
31 |
|
|
|
57 |
|
58 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
59 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
60 |
+
| 2.3281 | 1.0 | 65 | 2.2466 | 0.1532 | 0.0892 | 0.0818 | 0.1532 |
|
61 |
+
| 2.2842 | 2.0 | 130 | 2.2080 | 0.1757 | 0.1264 | 0.1989 | 0.1757 |
|
62 |
+
| 2.241 | 3.0 | 195 | 2.1896 | 0.1847 | 0.1334 | 0.1353 | 0.1847 |
|
63 |
+
| 2.2074 | 4.0 | 260 | 2.1692 | 0.1577 | 0.1349 | 0.3182 | 0.1577 |
|
64 |
+
| 2.1731 | 5.0 | 325 | 2.1473 | 0.1847 | 0.1354 | 0.1976 | 0.1847 |
|
65 |
+
| 2.1499 | 6.0 | 390 | 2.1371 | 0.1847 | 0.1455 | 0.2236 | 0.1847 |
|
66 |
+
| 2.111 | 7.0 | 455 | 2.1510 | 0.1757 | 0.1511 | 0.2523 | 0.1757 |
|
67 |
+
| 2.0868 | 8.0 | 520 | 2.1421 | 0.1892 | 0.1549 | 0.3178 | 0.1892 |
|
68 |
+
| 2.0654 | 9.0 | 585 | 2.1348 | 0.2027 | 0.1896 | 0.4106 | 0.2027 |
|
69 |
+
| 2.0593 | 10.0 | 650 | 2.1305 | 0.1982 | 0.1814 | 0.3549 | 0.1982 |
|
70 |
|
71 |
|
72 |
### Framework versions
|