End of training
Browse files
README.md
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
---
|
2 |
-
|
|
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
datasets:
|
@@ -24,16 +25,16 @@ model-index:
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
-
value: 0.
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
-
value: 0.
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
-
value: 0.
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
-
value: 0.
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -41,13 +42,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
41 |
|
42 |
# checkpoint-1000
|
43 |
|
44 |
-
This model is a fine-tuned version of [
|
45 |
It achieves the following results on the evaluation set:
|
46 |
-
- Loss: 0.
|
47 |
-
- Precision: 0.
|
48 |
-
- Recall: 0.
|
49 |
-
- F1: 0.
|
50 |
-
- Accuracy: 0.
|
51 |
|
52 |
## Model description
|
53 |
|
@@ -78,10 +79,10 @@ The following hyperparameters were used during training:
|
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
-
| No log | 1.0 | 340 | 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
|
86 |
|
87 |
### Framework versions
|
|
|
1 |
---
|
2 |
+
license: mit
|
3 |
+
base_model: microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.8456973293768546
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.890625
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.8675799086757991
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.9850593950279626
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
42 |
|
43 |
# checkpoint-1000
|
44 |
|
45 |
+
This model is a fine-tuned version of [microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext) on the ncbi_disease dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.0543
|
48 |
+
- Precision: 0.8457
|
49 |
+
- Recall: 0.8906
|
50 |
+
- F1: 0.8676
|
51 |
+
- Accuracy: 0.9851
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| No log | 1.0 | 340 | 0.0596 | 0.7778 | 0.875 | 0.8235 | 0.9795 |
|
83 |
+
| 0.0787 | 2.0 | 680 | 0.0416 | 0.8246 | 0.8865 | 0.8544 | 0.9851 |
|
84 |
+
| 0.0202 | 3.0 | 1020 | 0.0494 | 0.8385 | 0.8812 | 0.8593 | 0.9846 |
|
85 |
+
| 0.0202 | 4.0 | 1360 | 0.0543 | 0.8457 | 0.8906 | 0.8676 | 0.9851 |
|
86 |
|
87 |
|
88 |
### Framework versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 435599164
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0069d4c5f36b8604096c8fb6e450de23169179a49baa15ca16263b74a479e724
|
3 |
size 435599164
|
runs/Nov27_17-15-13_0289733fd6c3/events.out.tfevents.1701105421.0289733fd6c3.579.3
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:767f5d1d484fb7e7b69b557fccb276a3b7f766e8847e74d45467c62afad3c506
|
3 |
+
size 6983
|