PontifexMaximus commited on
Commit
c0bdccd
1 Parent(s): 6dc294f

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +103 -0
README.md ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - opus_infopankki
7
+ metrics:
8
+ - bleu
9
+ model-index:
10
+ - name: mt5-small-parsinlu-opus-translation_fa_en-finetuned-fa-to-en
11
+ results:
12
+ - task:
13
+ name: Sequence-to-sequence Language Modeling
14
+ type: text2text-generation
15
+ dataset:
16
+ name: opus_infopankki
17
+ type: opus_infopankki
18
+ args: en-fa
19
+ metrics:
20
+ - name: Bleu
21
+ type: bleu
22
+ value: 9.5106
23
+ ---
24
+
25
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
26
+ should probably proofread and complete it, then remove this comment. -->
27
+
28
+ # mt5-small-parsinlu-opus-translation_fa_en-finetuned-fa-to-en
29
+
30
+ This model is a fine-tuned version of [persiannlp/mt5-small-parsinlu-opus-translation_fa_en](https://huggingface.co/persiannlp/mt5-small-parsinlu-opus-translation_fa_en) on the opus_infopankki dataset.
31
+ It achieves the following results on the evaluation set:
32
+ - Loss: 2.5449
33
+ - Bleu: 9.5106
34
+ - Gen Len: 13.6434
35
+
36
+ ## Model description
37
+
38
+ More information needed
39
+
40
+ ## Intended uses & limitations
41
+
42
+ More information needed
43
+
44
+ ## Training and evaluation data
45
+
46
+ More information needed
47
+
48
+ ## Training procedure
49
+
50
+ ### Training hyperparameters
51
+
52
+ The following hyperparameters were used during training:
53
+ - learning_rate: 2e-06
54
+ - train_batch_size: 32
55
+ - eval_batch_size: 32
56
+ - seed: 42
57
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
58
+ - lr_scheduler_type: linear
59
+ - num_epochs: 30
60
+ - mixed_precision_training: Native AMP
61
+
62
+ ### Training results
63
+
64
+ | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
65
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|
66
+ | No log | 1.0 | 151 | 3.1656 | 7.194 | 14.1885 |
67
+ | No log | 2.0 | 302 | 3.0419 | 7.7031 | 14.1005 |
68
+ | No log | 3.0 | 453 | 2.9549 | 8.1502 | 13.9834 |
69
+ | 3.5336 | 4.0 | 604 | 2.8857 | 8.4488 | 13.9251 |
70
+ | 3.5336 | 5.0 | 755 | 2.8297 | 8.6606 | 13.786 |
71
+ | 3.5336 | 6.0 | 906 | 2.7808 | 8.8217 | 13.7983 |
72
+ | 3.2511 | 7.0 | 1057 | 2.7386 | 8.9221 | 13.7518 |
73
+ | 3.2511 | 8.0 | 1208 | 2.7006 | 9.1988 | 13.7159 |
74
+ | 3.2511 | 9.0 | 1359 | 2.6678 | 9.2751 | 13.676 |
75
+ | 3.1055 | 10.0 | 1510 | 2.6387 | 9.4142 | 13.6648 |
76
+ | 3.1055 | 11.0 | 1661 | 2.6154 | 9.5726 | 13.6841 |
77
+ | 3.1055 | 12.0 | 1812 | 2.5945 | 9.6571 | 13.6546 |
78
+ | 3.1055 | 13.0 | 1963 | 2.5813 | 9.8303 | 13.6571 |
79
+ | 3.0199 | 14.0 | 2114 | 2.5709 | 9.6726 | 13.5855 |
80
+ | 3.0199 | 15.0 | 2265 | 2.5619 | 9.632 | 13.6125 |
81
+ | 3.0199 | 16.0 | 2416 | 2.5563 | 9.5773 | 13.6256 |
82
+ | 2.9862 | 17.0 | 2567 | 2.5538 | 9.5425 | 13.6366 |
83
+ | 2.9862 | 18.0 | 2718 | 2.5515 | 9.5359 | 13.6326 |
84
+ | 2.9862 | 19.0 | 2869 | 2.5495 | 9.5544 | 13.642 |
85
+ | 2.9859 | 20.0 | 3020 | 2.5478 | 9.5183 | 13.6374 |
86
+ | 2.9859 | 21.0 | 3171 | 2.5466 | 9.5387 | 13.632 |
87
+ | 2.9859 | 22.0 | 3322 | 2.5458 | 9.5183 | 13.6355 |
88
+ | 2.9859 | 23.0 | 3473 | 2.5451 | 9.5019 | 13.6376 |
89
+ | 2.9731 | 24.0 | 3624 | 2.5449 | 9.5004 | 13.6405 |
90
+ | 2.9731 | 25.0 | 3775 | 2.5449 | 9.5106 | 13.6434 |
91
+ | 2.9731 | 26.0 | 3926 | 2.5449 | 9.5106 | 13.6434 |
92
+ | 2.9671 | 27.0 | 4077 | 2.5449 | 9.5106 | 13.6434 |
93
+ | 2.9671 | 28.0 | 4228 | 2.5449 | 9.5106 | 13.6434 |
94
+ | 2.9671 | 29.0 | 4379 | 2.5449 | 9.5106 | 13.6434 |
95
+ | 2.97 | 30.0 | 4530 | 2.5449 | 9.5106 | 13.6434 |
96
+
97
+
98
+ ### Framework versions
99
+
100
+ - Transformers 4.19.2
101
+ - Pytorch 1.7.1+cu110
102
+ - Datasets 2.2.2
103
+ - Tokenizers 0.12.1