update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: ''
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
#
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.2619
|
18 |
+
- Wer: 0.2457
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 7.5e-05
|
38 |
+
- train_batch_size: 16
|
39 |
+
- eval_batch_size: 16
|
40 |
+
- seed: 42
|
41 |
+
- gradient_accumulation_steps: 8
|
42 |
+
- total_train_batch_size: 128
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- lr_scheduler_warmup_steps: 2000
|
46 |
+
- num_epochs: 2.0
|
47 |
+
- mixed_precision_training: Native AMP
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
52 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
53 |
+
| 3.495 | 0.16 | 500 | 3.3883 | 1.0 |
|
54 |
+
| 2.9095 | 0.32 | 1000 | 2.9152 | 1.0000 |
|
55 |
+
| 1.8434 | 0.49 | 1500 | 1.0473 | 0.7446 |
|
56 |
+
| 1.4298 | 0.65 | 2000 | 0.5729 | 0.5130 |
|
57 |
+
| 1.1937 | 0.81 | 2500 | 0.3795 | 0.3450 |
|
58 |
+
| 1.1248 | 0.97 | 3000 | 0.3321 | 0.3052 |
|
59 |
+
| 1.0835 | 1.13 | 3500 | 0.3038 | 0.2805 |
|
60 |
+
| 1.0479 | 1.3 | 4000 | 0.2910 | 0.2689 |
|
61 |
+
| 1.0413 | 1.46 | 4500 | 0.2798 | 0.2593 |
|
62 |
+
| 1.014 | 1.62 | 5000 | 0.2727 | 0.2512 |
|
63 |
+
| 1.004 | 1.78 | 5500 | 0.2646 | 0.2471 |
|
64 |
+
| 0.9949 | 1.94 | 6000 | 0.2619 | 0.2457 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.17.0.dev0
|
70 |
+
- Pytorch 1.10.2+cu102
|
71 |
+
- Datasets 1.18.2.dev0
|
72 |
+
- Tokenizers 0.11.0
|