Text Classification
Safetensors
deberta-v2
tcapelle commited on
Commit
bea9a67
1 Parent(s): d2527f6

update readme

Browse files
Files changed (1) hide show
  1. README.md +20 -6
README.md CHANGED
@@ -33,15 +33,14 @@ For more detailed code regarding generating the annotations in Toxic Commons, tr
33
 
34
  # How to Use
35
 
36
- ```
37
- from transformers import AutoTokenizer
38
- from celadon.model import MultiHeadDebertaForSequenceClassification
39
 
40
- tokenizer = AutoTokenizer.from_pretrained("celadon")
41
- model = MultiHeadDebertaForSequenceClassification.from_pretrained("celadon")
42
  model.eval()
43
 
44
- sample_text = "This is an example of a normal sentence"
45
 
46
  inputs = tokenizer(sample_text, return_tensors="pt", padding=True, truncation=True)
47
  outputs = model(input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask'])
@@ -53,6 +52,21 @@ predictions = outputs.argmax(dim=-1).squeeze().tolist()
53
  print(f"Text: {sample_text}")
54
  for i, category in enumerate(categories):
55
  print(f"Prediction for Category {category}: {predictions[i]}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
  ```
57
 
58
  # How to Cite
 
33
 
34
  # How to Use
35
 
36
+ ```py
37
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
 
38
 
39
+ model = AutoModelForSequenceClassification.from_pretrained("PleIAs/celadon", trust_remote_code=True)
40
+ tokenizer = AutoTokenizer.from_pretrained("PleIAs/celadon", trust_remote_code=True)
41
  model.eval()
42
 
43
+ sample_text = "A very gender inappropriate comment"
44
 
45
  inputs = tokenizer(sample_text, return_tensors="pt", padding=True, truncation=True)
46
  outputs = model(input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask'])
 
52
  print(f"Text: {sample_text}")
53
  for i, category in enumerate(categories):
54
  print(f"Prediction for Category {category}: {predictions[i]}")
55
+ # Text: A very gender inappropriate comment
56
+ # Prediction for Category Race/Origin: 0
57
+ # Prediction for Category Gender/Sex: 3
58
+ # Prediction for Category Religion: 0
59
+ # Prediction for Category Ability: 0
60
+ # Prediction for Category Violence: 0
61
+ ```
62
+
63
+ you can also use transformers pipelines to get a more streamlined experience
64
+
65
+ ```py
66
+ pipe = pipeline("text-classification", model="PleIAs/celadon", trust_remote_code=True)
67
+ result = pipe("This is an example of a normal sentence")
68
+ print(result)
69
+ # [{'Race/Origin': 0, 'Gender/Sex': 3, 'Religion': 0, 'Ability': 0, 'Violence': 0}]
70
  ```
71
 
72
  # How to Cite