Pclanglais
commited on
Commit
•
4662ef1
1
Parent(s):
90cb4a1
Update README.md
Browse files
README.md
CHANGED
@@ -15,28 +15,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
15 |
|
16 |
# Pleias-Topic-Detection
|
17 |
|
18 |
-
|
19 |
-
It achieves the following results on the evaluation set:
|
20 |
-
- Loss: 2.6792
|
21 |
-
- Rouge1: 23.9657
|
22 |
-
- Rouge2: 7.6026
|
23 |
-
- Rougel: 22.7062
|
24 |
-
- Rougelsum: 22.7061
|
25 |
-
- Gen Len: 6.0459
|
26 |
|
27 |
-
|
28 |
|
29 |
-
More information needed
|
30 |
-
|
31 |
-
## Intended uses & limitations
|
32 |
-
|
33 |
-
More information needed
|
34 |
-
|
35 |
-
## Training and evaluation data
|
36 |
-
|
37 |
-
More information needed
|
38 |
-
|
39 |
-
## Training procedure
|
40 |
|
41 |
### Training hyperparameters
|
42 |
|
@@ -49,17 +31,3 @@ The following hyperparameters were used during training:
|
|
49 |
- lr_scheduler_type: linear
|
50 |
- num_epochs: 1
|
51 |
- mixed_precision_training: Native AMP
|
52 |
-
|
53 |
-
### Training results
|
54 |
-
|
55 |
-
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|
56 |
-
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
|
57 |
-
| 2.9647 | 1.0 | 24707 | 2.6792 | 23.9657 | 7.6026 | 22.7062 | 22.7061 | 6.0459 |
|
58 |
-
|
59 |
-
|
60 |
-
### Framework versions
|
61 |
-
|
62 |
-
- Transformers 4.41.1
|
63 |
-
- Pytorch 2.3.0+cu121
|
64 |
-
- Datasets 2.19.2
|
65 |
-
- Tokenizers 0.19.1
|
|
|
15 |
|
16 |
# Pleias-Topic-Detection
|
17 |
|
18 |
+
**Pleias-Topic-Detection** is an encoder-decoder specialized for topic detection. Given a document Pleias-Topic-Deduction will return a main topic that can be used for further downstream tasks (annotation, embedding indexation)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
Pleias-Topic-Detection is a finetuned version of t5-small on a set of 70,000 documents and associated topics from Common Corpus. While t5-small has been reportedly only trained in English, the model actually shows unexpected capacities for multilingual annotation. The final corpus include a significant amount of texts in French, Spanish, Italian, Dutch and German and has been proven to work somewhat in all of theses languages.
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
### Training hyperparameters
|
24 |
|
|
|
31 |
- lr_scheduler_type: linear
|
32 |
- num_epochs: 1
|
33 |
- mixed_precision_training: Native AMP
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|