gonzalez-agirre commited on
Commit
2180e00
·
1 Parent(s): 6e7bfb9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -6
README.md CHANGED
@@ -1,22 +1,57 @@
1
  ---
2
  language:
 
3
  - es
 
4
  license: apache-2.0
 
5
  tags:
 
6
  - "national library of spain"
 
7
  - "spanish"
 
8
  - "bne"
 
9
  - "capitel"
 
10
  - "ner"
 
11
  datasets:
 
12
  - "bne"
 
13
  - "capitel"
 
 
14
  metrics:
 
15
  - "f1"
 
16
  inference:
17
  parameters:
18
  aggregation_strategy: "first"
19
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  ---
21
 
22
  # Spanish RoBERTa-large trained on BNE finetuned for CAPITEL Named Entity Recognition (NER) dataset.
@@ -30,7 +65,13 @@ inference:
30
  - [How to use](#how-to-use)
31
  - [Limitations and bias](#limitations-and-bias)
32
  - [Training](#training)
 
 
 
33
  - [Evaluation](#evaluation)
 
 
 
34
  - [Additional information](#additional-information)
35
  - [Author](#author)
36
  - [Contact information](#contact-information)
@@ -43,24 +84,53 @@ inference:
43
  </details>
44
 
45
  ## Model description
46
- RoBERTa-large-bne is a transformer-based masked language model for the Spanish language. It is based on the [RoBERTa](https://arxiv.org/abs/1907.11692) large model and has been pre-trained using the largest Spanish corpus known to date, with a total of 570GB of clean and deduplicated text processed for this work, compiled from the web crawlings performed by the [National Library of Spain (Biblioteca Nacional de España)](http://www.bne.es/en/Inicio/index.html) from 2009 to 2019.
47
-
48
- Original pre-trained model can be found here: https://huggingface.co/BSC-TeMU/roberta-large-bne
49
 
50
  ## Intended uses and limitations
51
 
 
 
52
  ## How to use
53
 
 
 
 
 
 
 
 
 
 
 
 
54
  ## Limitations and bias
55
  At the time of submission, no measures have been taken to estimate the bias embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated.
56
 
57
  ## Training
58
  The dataset used is the one from the [CAPITEL competition at IberLEF 2020](https://sites.google.com/view/capitel2020) (sub-task 1).
59
 
 
 
 
60
  ## Evaluation
61
- F1 Score: 0.8998
62
 
63
- For evaluation details visit our [GitHub repository](https://github.com/PlanTL-GOB-ES/lm-spanish).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64
 
65
  ## Additional information
66
 
 
1
  ---
2
  language:
3
+
4
  - es
5
+
6
  license: apache-2.0
7
+
8
  tags:
9
+
10
  - "national library of spain"
11
+
12
  - "spanish"
13
+
14
  - "bne"
15
+
16
  - "capitel"
17
+
18
  - "ner"
19
+
20
  datasets:
21
+
22
  - "bne"
23
+
24
  - "capitel"
25
+
26
+
27
  metrics:
28
+
29
  - "f1"
30
+
31
  inference:
32
  parameters:
33
  aggregation_strategy: "first"
34
+
35
+ model-index:
36
+ - name: roberta-large-bne-capiter-ner
37
+ results:
38
+ - task:
39
+ type: token-classification
40
+ dataset:
41
+ type: ner
42
+ name: CAPITEL-NERC
43
+ metrics:
44
+ - name: F1
45
+ type: f1
46
+ value: 0.9051
47
+
48
+
49
+ widget:
50
+
51
+ - "Me llamo Francisco Javier y vivo en Madrid."
52
+
53
+ - "Mi hermano Ramón y su mejor amigo Luis trabajan en el BSC."
54
+
55
  ---
56
 
57
  # Spanish RoBERTa-large trained on BNE finetuned for CAPITEL Named Entity Recognition (NER) dataset.
 
65
  - [How to use](#how-to-use)
66
  - [Limitations and bias](#limitations-and-bias)
67
  - [Training](#training)
68
+ - [Training](#training)
69
+ - [Training data](#training-data)
70
+ - [Training procedure](#training-procedure)
71
  - [Evaluation](#evaluation)
72
+ - [Evaluation](#evaluation)
73
+ - [Variable and metrics](#variable-and-metrics)
74
+ - [Evaluation results](#evaluation-results)
75
  - [Additional information](#additional-information)
76
  - [Author](#author)
77
  - [Contact information](#contact-information)
 
84
  </details>
85
 
86
  ## Model description
87
+ The **roberta-large-bne-capitel-ner** is Named Entity Recognition (NER) model for the Spanish language fine-tuned from the [roberta-large-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-large-bne) model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained using the largest Spanish corpus known to date, with a total of 570GB of clean and deduplicated text, processed for this work, compiled from the web crawlings performed by the [National Library of Spain (Biblioteca Nacional de España)](http://www.bne.es/en/Inicio/index.html) from 2009 to 2019.
 
 
88
 
89
  ## Intended uses and limitations
90
 
91
+ **roberta-large-bne-capitel-ner** model can be used to recognize Named Entities (NE). The model is limited by its training dataset and may not generalize well for all use cases.
92
+
93
  ## How to use
94
 
95
+ ```python
96
+ from transformers import pipeline
97
+ from pprint import pprint
98
+
99
+ nlp = pipeline("ner", model="PlanTL-GOB-ES/roberta-large-bne-capitel-ner")
100
+ example = "Me llamo Francisco Javier y vivo en Madrid."
101
+
102
+ ner_results = nlp(example)
103
+ pprint(ner_results)
104
+ ```
105
+
106
  ## Limitations and bias
107
  At the time of submission, no measures have been taken to estimate the bias embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated.
108
 
109
  ## Training
110
  The dataset used is the one from the [CAPITEL competition at IberLEF 2020](https://sites.google.com/view/capitel2020) (sub-task 1).
111
 
112
+ ### Training procedure
113
+ The model was trained with a batch size of 32 and a learning rate of 3e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set and then evaluated it on the test set.
114
+
115
  ## Evaluation
 
116
 
117
+ ### Variable and metrics
118
+ This model was finetuned maximizing F1 score.
119
+
120
+ ## Evaluation results
121
+ We evaluated the *roberta-large-bne-capitel-ner** on the CAPITEL-NERC test set against standard multilingual and monolingual baselines:
122
+
123
+ | Model | XNLI (Accuracy) |
124
+ | ------------|:----|
125
+ | roberta-large-bne-capitel-ner | **90.51** |
126
+ | roberta-base-bne-capitel-ner | 89.60|
127
+ | BETO | 87.72 |
128
+ | mBERT | 88.10 |
129
+ | BERTIN | 88.56 |
130
+ | ELECTRA | 80.35 |
131
+
132
+ For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/PlanTL-GOB-ES/lm-spanish).
133
+
134
 
135
  ## Additional information
136