second version
Browse files- .gitattributes +1 -0
- README.md +32 -106
- es_pharmaconer_ner_trf-any-py3-none-any.whl +3 -0
- meta.json +9 -7
.gitattributes
CHANGED
@@ -34,3 +34,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
es_pharmaconer_ner_trf-3.4.0-py3-none-any.whl filter=lfs diff=lfs merge=lfs -text
|
36 |
transformer/model filter=lfs diff=lfs merge=lfs -text
|
|
|
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
es_pharmaconer_ner_trf-3.4.0-py3-none-any.whl filter=lfs diff=lfs merge=lfs -text
|
36 |
transformer/model filter=lfs diff=lfs merge=lfs -text
|
37 |
+
es_pharmaconer_ner_trf-any-py3-none-any.whl filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,18 +1,10 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
language:
|
4 |
-
- es
|
5 |
-
|
6 |
tags:
|
7 |
-
- biomedical
|
8 |
-
- clinical
|
9 |
-
- eHR
|
10 |
- spacy
|
11 |
- token-classification
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
model-index:
|
17 |
- name: es_pharmaconer_ner_trf
|
18 |
results:
|
@@ -22,112 +14,46 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: NER Precision
|
24 |
type: precision
|
25 |
-
value: 0.
|
26 |
- name: NER Recall
|
27 |
type: recall
|
28 |
value: 0.9152631579
|
29 |
- name: NER F Score
|
30 |
type: f_score
|
31 |
value: 0.9109481404
|
32 |
-
|
33 |
-
widget:
|
34 |
-
- text: "Se realizó estudio analítico destacando incremento de niveles de PTH y vitamina D (103,7 pg/ml y 272 ng/ml, respectivamente), atribuidos al exceso de suplementación de vitamina D."
|
35 |
-
- text: "Por el hallazgo de múltiples fracturas por estrés, se procedió a estudio en nuestras consultas, realizándose análisis con función renal, calcio sérico y urinario, calcio iónico, magnesio y PTH, que fueron normales."
|
36 |
-
- text: "Se solicitó una analítica que incluía hemograma, bioquímica, anticuerpos antinucleares (ANA) y serologías, examen de orina, así como biopsia de la lesión. Los resultados fueron normales, con ANA, anti-Sm, anti-RNP, anti-SSA, anti-SSB, anti-Jo1 y anti-Scl70 negativos."
|
37 |
-
|
38 |
---
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
## Table of Contents
|
42 |
<details>
|
43 |
-
<summary>Click to expand</summary>
|
44 |
-
|
45 |
-
- [Overview](#overview)
|
46 |
-
- [Model description](#model-description)
|
47 |
-
- [How to use](#how-to-use)
|
48 |
-
- [Intended uses and limitations](#intended-uses-and-limitations)
|
49 |
-
- [Training](#training)
|
50 |
-
- [Training data](#training-data)
|
51 |
-
- [Training procedure](#training-procedure)
|
52 |
-
- [Evaluation](#evaluation)
|
53 |
-
- [Evaluation results](#evaluation-results)
|
54 |
-
- [Additional information](#additional-information)
|
55 |
-
- [Contact information](#contact-information)
|
56 |
-
- [Copyright](#copyright)
|
57 |
-
- [Licensing information](#licensing-information)
|
58 |
-
- [Funding](#funding)
|
59 |
-
- [Citation information](#citation-information)
|
60 |
-
- [Disclaimer](#disclaimer)
|
61 |
-
|
62 |
-
</details>
|
63 |
-
|
64 |
-
## Overview
|
65 |
-
- **Architecture:**
|
66 |
-
- **Language:**
|
67 |
-
- **Task:**
|
68 |
-
- **Data:**
|
69 |
-
|
70 |
-
## Model description
|
71 |
-
Basic Spacy BioNER pipeline, with a RoBERTa-based model [bsc-bio-ehr-es] (https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) and a dataset, Pharmaconer, a NER dataset annotated with substances, compounds and proteins entities. For further information, check the [official website](https://temu.bsc.es/pharmaconer/). Visit our [GitHub repository](https://github.com/PlanTL-GOB-ES/lm-biomedical-clinical-es). This work was funded by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) within the framework of the Plan-TL",
|
72 |
-
"author":"The Text Mining Unit from Barcelona Supercomputing Center.
|
73 |
-
|
74 |
-
|
75 |
-
## Intended uses and limitations
|
76 |
-
|
77 |
-
|
78 |
-
## How to use
|
79 |
-
|
80 |
-
|
81 |
-
## Limitations and bias
|
82 |
-
|
83 |
|
84 |
-
|
85 |
|
86 |
-
|
|
|
|
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
## Evaluation
|
92 |
-
|
93 |
-
### Evaluation results
|
94 |
-
|
95 |
-
|
96 |
-
## Additional information
|
97 |
-
|
98 |
-
### Author
|
99 |
-
Text Mining Unit (TeMU) at the Barcelona Supercomputing Center (bsc-temu@bsc.es)
|
100 |
-
|
101 |
-
### Contact information
|
102 |
-
For further information, send an email to <plantl-gob-es@bsc.es>
|
103 |
-
|
104 |
-
### Copyright
|
105 |
-
Copyright by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) (2022)
|
106 |
-
|
107 |
-
### Licensing information
|
108 |
-
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
|
109 |
-
|
110 |
-
### Funding
|
111 |
-
This work was funded by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) within the framework of the Plan-TL.
|
112 |
-
|
113 |
-
|
114 |
-
### Citation Information
|
115 |
-
|
116 |
-
### Disclaimer
|
117 |
-
|
118 |
-
<details>
|
119 |
-
<summary>Click to expand</summary>
|
120 |
-
|
121 |
-
The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions.
|
122 |
-
|
123 |
-
When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence.
|
124 |
-
|
125 |
-
In no event shall the owner of the models (SEDIA – State Secretariat for Digitalization and Artificial Intelligence) nor the creator (BSC – Barcelona Supercomputing Center) be liable for any results arising from the use made by third parties of these models.
|
126 |
-
|
127 |
-
|
128 |
-
Los modelos publicados en este repositorio tienen una finalidad generalista y están a disposición de terceros. Estos modelos pueden tener sesgos y/u otro tipo de distorsiones indeseables.
|
129 |
|
130 |
-
|
131 |
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
|
|
|
|
|
|
|
|
2 |
tags:
|
|
|
|
|
|
|
3 |
- spacy
|
4 |
- token-classification
|
5 |
+
language:
|
6 |
+
- es
|
7 |
+
license: mit
|
|
|
8 |
model-index:
|
9 |
- name: es_pharmaconer_ner_trf
|
10 |
results:
|
|
|
14 |
metrics:
|
15 |
- name: NER Precision
|
16 |
type: precision
|
17 |
+
value: 0.9066736184
|
18 |
- name: NER Recall
|
19 |
type: recall
|
20 |
value: 0.9152631579
|
21 |
- name: NER F Score
|
22 |
type: f_score
|
23 |
value: 0.9109481404
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
---
|
25 |
+
Basic Spacy BioNER pipeline, with a RoBERTa-based model [bsc-bio-ehr-es] (https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) and a dataset, Pharmaconer, a NER dataset annotated with substances, compounds and proteins entities. For further information, check the [official website](https://temu.bsc.es/pharmaconer/). Visit our [GitHub repository](https://github.com/PlanTL-GOB-ES/lm-biomedical-clinical-es). This work was funded by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) within the framework of the Plan-TL
|
26 |
+
|
27 |
+
| Feature | Description |
|
28 |
+
| --- | --- |
|
29 |
+
| **Name** | `es_pharmaconer_ner_trf` |
|
30 |
+
| **Version** | `3.4.1` |
|
31 |
+
| **spaCy** | `>=3.4.1,<3.5.0` |
|
32 |
+
| **Default Pipeline** | `transformer`, `ner` |
|
33 |
+
| **Components** | `transformer`, `ner` |
|
34 |
+
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
|
35 |
+
| **Sources** | n/a |
|
36 |
+
| **License** | `mit` |
|
37 |
+
| **Author** | [The Text Mining Unit from Barcelona Supercomputing Center.](https://huggingface.co/PlanTL-GOB-ES/) |
|
38 |
+
|
39 |
+
### Label Scheme
|
40 |
|
|
|
41 |
<details>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
<summary>View label scheme (4 labels for 1 components)</summary>
|
44 |
|
45 |
+
| Component | Labels |
|
46 |
+
| --- | --- |
|
47 |
+
| **`ner`** | `NORMALIZABLES`, `NO_NORMALIZABLES`, `PROTEINAS`, `UNCLEAR` |
|
48 |
|
49 |
+
</details>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
### Accuracy
|
52 |
|
53 |
+
| Type | Score |
|
54 |
+
| --- | --- |
|
55 |
+
| `ENTS_F` | 91.09 |
|
56 |
+
| `ENTS_P` | 90.67 |
|
57 |
+
| `ENTS_R` | 91.53 |
|
58 |
+
| `TRANSFORMER_LOSS` | 15719.51 |
|
59 |
+
| `NER_LOSS` | 22469.88 |
|
es_pharmaconer_ner_trf-any-py3-none-any.whl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ed5f08f4df81f25c5f007e59d0b8bd98541f6e0c13572aa347b87858690a9ca9
|
3 |
+
size 440440035
|
meta.json
CHANGED
@@ -1,20 +1,19 @@
|
|
1 |
{
|
2 |
"lang":"es",
|
3 |
"name":"pharmaconer_ner_trf",
|
4 |
-
"version":"3.4.
|
5 |
-
"spacy_version":">=3.4.1,<3.5.0",
|
6 |
"description":"Basic Spacy BioNER pipeline, with a RoBERTa-based model [bsc-bio-ehr-es] (https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) and a dataset, Pharmaconer, a NER dataset annotated with substances, compounds and proteins entities. For further information, check the [official website](https://temu.bsc.es/pharmaconer/). Visit our [GitHub repository](https://github.com/PlanTL-GOB-ES/lm-biomedical-clinical-es). This work was funded by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) within the framework of the Plan-TL",
|
7 |
"author":"The Text Mining Unit from Barcelona Supercomputing Center.",
|
8 |
"email":"plantl-gob-es@bsc.es",
|
9 |
"url":"https://huggingface.co/PlanTL-GOB-ES/",
|
10 |
-
"license":"
|
|
|
11 |
"spacy_git_version":"Unknown",
|
12 |
"vectors":{
|
13 |
"width":0,
|
14 |
"vectors":0,
|
15 |
"keys":0,
|
16 |
-
"name":null
|
17 |
-
"mode":"default"
|
18 |
},
|
19 |
"labels":{
|
20 |
"transformer":[
|
@@ -66,5 +65,8 @@
|
|
66 |
},
|
67 |
"transformer_loss":157.1950596615,
|
68 |
"ner_loss":224.6988260417
|
69 |
-
}
|
70 |
-
|
|
|
|
|
|
|
|
1 |
{
|
2 |
"lang":"es",
|
3 |
"name":"pharmaconer_ner_trf",
|
4 |
+
"version":"3.4.1",
|
|
|
5 |
"description":"Basic Spacy BioNER pipeline, with a RoBERTa-based model [bsc-bio-ehr-es] (https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) and a dataset, Pharmaconer, a NER dataset annotated with substances, compounds and proteins entities. For further information, check the [official website](https://temu.bsc.es/pharmaconer/). Visit our [GitHub repository](https://github.com/PlanTL-GOB-ES/lm-biomedical-clinical-es). This work was funded by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) within the framework of the Plan-TL",
|
6 |
"author":"The Text Mining Unit from Barcelona Supercomputing Center.",
|
7 |
"email":"plantl-gob-es@bsc.es",
|
8 |
"url":"https://huggingface.co/PlanTL-GOB-ES/",
|
9 |
+
"license":"mit",
|
10 |
+
"spacy_version":">=3.4.1,<3.5.0",
|
11 |
"spacy_git_version":"Unknown",
|
12 |
"vectors":{
|
13 |
"width":0,
|
14 |
"vectors":0,
|
15 |
"keys":0,
|
16 |
+
"name":null
|
|
|
17 |
},
|
18 |
"labels":{
|
19 |
"transformer":[
|
|
|
65 |
},
|
66 |
"transformer_loss":157.1950596615,
|
67 |
"ner_loss":224.6988260417
|
68 |
+
},
|
69 |
+
"requirements":[
|
70 |
+
"spacy-transformers>=1.1.8,<1.2.0"
|
71 |
+
]
|
72 |
+
}
|