Update README.md
Browse files
README.md
CHANGED
@@ -32,19 +32,66 @@ widget:
|
|
32 |
---
|
33 |
|
34 |
# Spanish RoBERTa-base biomedical model finetuned for the Named Entity Recognition (NER) task on the PharmaCoNER dataset.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
A fine-tuned version of the [bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model and has been pre-trained using the largest Spanish biomedical corpus known to date, composed of biomedical documents, clinical cases and EHR documents for a total of 1.1B tokens of clean and deduplicated text processed.
|
36 |
|
37 |
For more details about the corpora and training, check the _bsc-bio-ehr-es_ model card.
|
38 |
|
39 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
The dataset used is [PharmaCoNER](https://huggingface.co/datasets/PlanTL-GOB-ES/pharmaconer), a NER dataset annotated with substances, compounds and proteins entities. For further information, check the [official website](https://temu.bsc.es/pharmaconer/).
|
41 |
|
42 |
-
## Evaluation
|
43 |
F1 Score: 0.8913
|
44 |
|
45 |
For evaluation details visit our [GitHub repository](https://github.com/PlanTL-GOB-ES/lm-biomedical-clinical-es).
|
46 |
|
47 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
If you use these models, please cite our work:
|
49 |
|
50 |
```bibtext
|
@@ -71,23 +118,11 @@ If you use these models, please cite our work:
|
|
71 |
}
|
72 |
```
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
Copyright by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) (2022)
|
77 |
-
|
78 |
-
## Licensing information
|
79 |
-
|
80 |
-
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
|
81 |
-
|
82 |
-
## Funding
|
83 |
-
|
84 |
-
This work was funded by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) within the framework of the Plan-TL.
|
85 |
-
|
86 |
-
## Disclaimer
|
87 |
|
88 |
The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions.
|
89 |
|
90 |
-
When third
|
91 |
|
92 |
In no event shall the owner of the models (SEDIA – State Secretariat for digitalization and artificial intelligence) nor the creator (BSC – Barcelona Supercomputing Center) be liable for any results arising from the use made by third parties of these models.
|
93 |
|
@@ -96,4 +131,4 @@ Los modelos publicados en este repositorio tienen una finalidad generalista y es
|
|
96 |
|
97 |
Cuando terceros desplieguen o proporcionen sistemas y/o servicios a otras partes usando alguno de estos modelos (o utilizando sistemas basados en estos modelos) o se conviertan en usuarios de los modelos, deben tener en cuenta que es su responsabilidad mitigar los riesgos derivados de su uso y, en todo caso, cumplir con la normativa aplicable, incluyendo la normativa en materia de uso de inteligencia artificial.
|
98 |
|
99 |
-
En ningún caso el propietario de los modelos (SEDIA – Secretaría de Estado de Digitalización e Inteligencia Artificial) ni el creador (BSC – Barcelona Supercomputing Center) serán responsables de los resultados derivados del uso que hagan terceros de estos modelos.
|
|
|
32 |
---
|
33 |
|
34 |
# Spanish RoBERTa-base biomedical model finetuned for the Named Entity Recognition (NER) task on the PharmaCoNER dataset.
|
35 |
+
|
36 |
+
## Table of contents
|
37 |
+
<details>
|
38 |
+
<summary>Click to expand</summary>
|
39 |
+
|
40 |
+
- [Model description](#model-description)
|
41 |
+
- [Intended uses and limitations](#intended-use)
|
42 |
+
- [How to use](#how-to-use)
|
43 |
+
- [Limitations and bias](#limitations-and-bias)
|
44 |
+
- [Training](#training)
|
45 |
+
- [Evaluation](#evaluation)
|
46 |
+
- [Additional information](#additional-information)
|
47 |
+
- [Author](#author)
|
48 |
+
- [Contact information](#contact-information)
|
49 |
+
- [Copyright](#copyright)
|
50 |
+
- [Licensing information](#licensing-information)
|
51 |
+
- [Funding](#funding)
|
52 |
+
- [Citing information](#citing-information)
|
53 |
+
- [Disclaimer](#disclaimer)
|
54 |
+
|
55 |
+
</details>
|
56 |
+
|
57 |
+
## Model description
|
58 |
A fine-tuned version of the [bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model and has been pre-trained using the largest Spanish biomedical corpus known to date, composed of biomedical documents, clinical cases and EHR documents for a total of 1.1B tokens of clean and deduplicated text processed.
|
59 |
|
60 |
For more details about the corpora and training, check the _bsc-bio-ehr-es_ model card.
|
61 |
|
62 |
+
## Intended uses and limitations
|
63 |
+
|
64 |
+
## How to use
|
65 |
+
|
66 |
+
## Limitations and bias
|
67 |
+
At the time of submission, no measures have been taken to estimate the bias embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated.
|
68 |
+
|
69 |
+
## Training
|
70 |
The dataset used is [PharmaCoNER](https://huggingface.co/datasets/PlanTL-GOB-ES/pharmaconer), a NER dataset annotated with substances, compounds and proteins entities. For further information, check the [official website](https://temu.bsc.es/pharmaconer/).
|
71 |
|
72 |
+
## Evaluation
|
73 |
F1 Score: 0.8913
|
74 |
|
75 |
For evaluation details visit our [GitHub repository](https://github.com/PlanTL-GOB-ES/lm-biomedical-clinical-es).
|
76 |
|
77 |
+
## Additional information
|
78 |
+
|
79 |
+
### Author
|
80 |
+
Text Mining Unit (TeMU) at the Barcelona Supercomputing Center (bsc-temu@bsc.es)
|
81 |
+
|
82 |
+
### Contact information
|
83 |
+
For further information, send an email to <plantl-gob-es@bsc.es>
|
84 |
+
|
85 |
+
### Copyright
|
86 |
+
Copyright by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) (2022)
|
87 |
+
|
88 |
+
### Licensing information
|
89 |
+
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
|
90 |
+
|
91 |
+
### Funding
|
92 |
+
This work was funded by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) within the framework of the Plan-TL.
|
93 |
+
|
94 |
+
## Citing information
|
95 |
If you use these models, please cite our work:
|
96 |
|
97 |
```bibtext
|
|
|
118 |
}
|
119 |
```
|
120 |
|
121 |
+
### Disclaimer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions.
|
124 |
|
125 |
+
When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of artificial intelligence.
|
126 |
|
127 |
In no event shall the owner of the models (SEDIA – State Secretariat for digitalization and artificial intelligence) nor the creator (BSC – Barcelona Supercomputing Center) be liable for any results arising from the use made by third parties of these models.
|
128 |
|
|
|
131 |
|
132 |
Cuando terceros desplieguen o proporcionen sistemas y/o servicios a otras partes usando alguno de estos modelos (o utilizando sistemas basados en estos modelos) o se conviertan en usuarios de los modelos, deben tener en cuenta que es su responsabilidad mitigar los riesgos derivados de su uso y, en todo caso, cumplir con la normativa aplicable, incluyendo la normativa en materia de uso de inteligencia artificial.
|
133 |
|
134 |
+
En ningún caso el propietario de los modelos (SEDIA – Secretaría de Estado de Digitalización e Inteligencia Artificial) ni el creador (BSC – Barcelona Supercomputing Center) serán responsables de los resultados derivados del uso que hagan terceros de estos modelos.
|