Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +36 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 12.57 +/- 37.00
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc58de2be60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc58de2bef0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc58de2bf80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc58de32050>", "_build": "<function ActorCriticPolicy._build at 0x7fc58de320e0>", "forward": "<function ActorCriticPolicy.forward at 0x7fc58de32170>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc58de32200>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc58de32290>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc58de32320>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc58de323b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc58de32440>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc58de825d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1653067301.4102688, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAA+nQFPqeDNj9ajDI+gtsvvk9qTj2yrZA7AAAAAAAAAABAGq+99uxbuqMazrtfaaw2xCBMOZuHGrYAAIA/AACAPwBIqDyuSYK60XoauXzGtrTkhmU7CrMvOAAAgD8AAIA/mqiAPBQMg7rwtCk6/WfRte/qqzhqEMm0AACAPwAAgD8As7M9uPa1uao+Xzv1eFk2bTW9ujoLgroAAIA/AACAP2Y2Kj4k+E88cjegusbcDbnKIuM901IJugAAgD8AAIA/pmIbvq524Dsmls86hpmBuCIyfb1lsgW6AACAPwAAgD+dAvc+gBWCPsDRJL3CQsO9KdNxPLiB77wAAAAAAAAAAOA/Vj7NxJY+1lDrPRCgFr4/uNe8OXqWPQAAAAAAAAAAjX6IPRN3qT9dz+A+xguzvmfjDT04okY9AAAAAAAAAABNSQ0+iIjoPu9jCL01BxC+Fgo4PG31b70AAAAAAAAAAK03HT4cVxm8a6mUu1K95jm/JX+9cX/COgAAAAAAAIA/E/+CPh+XsjpITww8hgZMvuBRxDyOVt08AAAAAAAAAAAzsi4+n2KZu87m9bm0CFQ3sb0GvRxSDzkAAIA/AACAP+3mTj5F0/08SkZWOgRpKTmpq4w+Ie2nuQAAgD8AAIA/oDqjPlLemT4BarG9QDGHvhXswTzN5ri9AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsIwN3ezfLcCUhpRSlIwBbJRNPQGMAXSUR0CH6uqd6LOzdX2UKGgGaAloD0MIclDCTNtDXUCUhpRSlGgVTegDaBZHQIfrF7BwdbR1fZQoaAZoCWgPQwjoTrD/OtpcQJSGlFKUaBVN6ANoFkdAh/tpNTLntHV9lChoBmgJaA9DCKw41VqYLlZAlIaUUpRoFU3oA2gWR0CH+8nndO6/dX2UKGgGaAloD0MIflTDfk9GW0CUhpRSlGgVTegDaBZHQIgApjhDPWx1fZQoaAZoCWgPQwhyhuKOtyloQJSGlFKUaBVNrANoFkdAiA9TaK1og3V9lChoBmgJaA9DCBhbCHJQCVdAlIaUUpRoFU3oA2gWR0CIUqH8jzI4dX2UKGgGaAloD0MIjNe8qrNYU8CUhpRSlGgVTUsBaBZHQIhaJ7LMcIZ1fZQoaAZoCWgPQwj2Kcdk8VNmQJSGlFKUaBVNXwJoFkdAiGRpFTefqXV9lChoBmgJaA9DCD6WPnRBZ19AlIaUUpRoFU3oA2gWR0CIgNEZzgdfdX2UKGgGaAloD0MIAOFDiRamYECUhpRSlGgVTegDaBZHQIiBZQYUFjd1fZQoaAZoCWgPQwgBipElc9RPQJSGlFKUaBVN6ANoFkdAiIPCQtBfKXV9lChoBmgJaA9DCNtPxvgwSV9AlIaUUpRoFU3oA2gWR0CIg8qPOpsHdX2UKGgGaAloD0MIOUNxx5vhXkCUhpRSlGgVTegDaBZHQIiNPtKIznB1fZQoaAZoCWgPQwiD+MCO/8BcQJSGlFKUaBVN6ANoFkdAiJ0rb5/LDHV9lChoBmgJaA9DCIsyG2SSqldAlIaUUpRoFU3oA2gWR0CIoshTOxB3dX2UKGgGaAloD0MIgPRNmgYlMcCUhpRSlGgVTUkBaBZHQIi5PD1oQFt1fZQoaAZoCWgPQwjGUbmJWhdiQJSGlFKUaBVN6ANoFkdAiM7Ljo6jnHV9lChoBmgJaA9DCPDbEOM1Y1pAlIaUUpRoFU3oA2gWR0CI0eMaS9uhdX2UKGgGaAloD0MIsOJUa2HzU0CUhpRSlGgVTegDaBZHQIjkhBVuJk51fZQoaAZoCWgPQwi688RztnpfQJSGlFKUaBVN6ANoFkdAiOTrZJ04i3V9lChoBmgJaA9DCFH4bB0cfVtAlIaUUpRoFU3oA2gWR0CI6mXdj5KwdX2UKGgGaAloD0MIsrrVc9IbPcCUhpRSlGgVTQcCaBZHQIju1QwblzV1fZQoaAZoCWgPQwhLrIxGPpVSQJSGlFKUaBVN6ANoFkdAiPs0QbuMM3V9lChoBmgJaA9DCNhkjXqI2V9AlIaUUpRoFU3oA2gWR0CJCPAZbY9QdX2UKGgGaAloD0MIW+832nEoYECUhpRSlGgVTegDaBZHQIlG5XGOuJV1fZQoaAZoCWgPQwjG4GHaN+9FwJSGlFKUaBVNAgFoFkdAiUonoX9BKXV9lChoBmgJaA9DCOpYpfRMBVRAlIaUUpRoFU3oA2gWR0CJUdkauOjqdX2UKGgGaAloD0MILlkV4aaEZ0CUhpRSlGgVTfEBaBZHQIlheOEM9bJ1fZQoaAZoCWgPQwgvpMNDGLZZQJSGlFKUaBVN6ANoFkdAiW2GRNh3JXV9lChoBmgJaA9DCEaYolwaJFtAlIaUUpRoFU3oA2gWR0CJcIPXkHUudX2UKGgGaAloD0MIOdBDbRt2XkCUhpRSlGgVTegDaBZHQIlwisbNr0t1fZQoaAZoCWgPQwj+1eO+1cY0wJSGlFKUaBVNRQFoFkdAiYNCONo8IXV9lChoBmgJaA9DCJMdG4F4vVpAlIaUUpRoFU3oA2gWR0CJi1TOPeYVdX2UKGgGaAloD0MId6OP+YDEVECUhpRSlGgVTegDaBZHQImRTU1AJLN1fZQoaAZoCWgPQwi5ADRKl1BhQJSGlFKUaBVN6ANoFkdAiaczCtRvWHV9lChoBmgJaA9DCACt+fGXvFhAlIaUUpRoFU3oA2gWR0CJvZhjOLR8dX2UKGgGaAloD0MIwmnBi77FWkCUhpRSlGgVTegDaBZHQInQl2q1gIB1fZQoaAZoCWgPQwh6VtKKb2JaQJSGlFKUaBVN6ANoFkdAidaMnqmj03V9lChoBmgJaA9DCOcZ+5KNimJAlIaUUpRoFU3oA2gWR0CJ2wVqveP8dX2UKGgGaAloD0MIcLVOXI4nXUCUhpRSlGgVTegDaBZHQInm60D2alV1fZQoaAZoCWgPQwhiSbn7HLNXQJSGlFKUaBVN6ANoFkdAifTE5yU9p3V9lChoBmgJaA9DCE2jycUYCmRAlIaUUpRoFU3oA2gWR0CJ/IHdGiHqdX2UKGgGaAloD0MI5X/yd29saUCUhpRSlGgVTaQCaBZHQIo2l7D2rXF1fZQoaAZoCWgPQwgs8uuH2I5EwJSGlFKUaBVNEgFoFkdAijlgmJFb3XV9lChoBmgJaA9DCNaLoZxoYlhAlIaUUpRoFU3oA2gWR0CKPWPZqVQidX2UKGgGaAloD0MIrFPle0baTECUhpRSlGgVTegDaBZHQIpMACGN70F1fZQoaAZoCWgPQwiimpKsw4teQJSGlFKUaBVN6ANoFkdAilbmlhw2l3V9lChoBmgJaA9DCBwpWyTt91ZAlIaUUpRoFU3oA2gWR0CKWYljVhCudX2UKGgGaAloD0MIxR7axwqsWkCUhpRSlGgVTegDaBZHQIpZkU21lXl1fZQoaAZoCWgPQwgNUYU/w1sgQJSGlFKUaBVNHQFoFkdAimEhqj8DS3V9lChoBmgJaA9DCIWWdf9YBDPAlIaUUpRoFU1wAWgWR0CKcQPWhAW0dX2UKGgGaAloD0MIEtkHWZYsYECUhpRSlGgVTegDaBZHQIpxMOoYNy51fZQoaAZoCWgPQwh5BaInZVlYQJSGlFKUaBVN6ANoFkdAinaQK0D2anV9lChoBmgJaA9DCDNRhNTtW1RAlIaUUpRoFU3oA2gWR0CKi+yylenidX2UKGgGaAloD0MIBirj3+dmZUCUhpRSlGgVTegDaBZHQIqigIOYplV1fZQoaAZoCWgPQwjHD5VGzOg+wJSGlFKUaBVNagFoFkdAirIRB3RoiHV9lChoBmgJaA9DCGXEBaBRSWJAlIaUUpRoFU3oA2gWR0CKudNSIgvEdX2UKGgGaAloD0MIL6aZ7nUwX0CUhpRSlGgVTegDaBZHQIq+OPcSGrV1fZQoaAZoCWgPQwhiLqnabrVTQJSGlFKUaBVN6ANoFkdAiskth3JPqXV9lChoBmgJaA9DCH7k1qTbLWBAlIaUUpRoFU3oA2gWR0CK1cNx2jfvdX2UKGgGaAloD0MIxEFClC/UXkCUhpRSlGgVTegDaBZHQIsZKXjU/fR1fZQoaAZoCWgPQwgYeVkTC+FjQJSGlFKUaBVN6ANoFkdAix0dSde6Z3V9lChoBmgJaA9DCOPdkbHatlJAlIaUUpRoFU3oA2gWR0CLK9+irT6SdX2UKGgGaAloD0MICJRNucLnYECUhpRSlGgVTegDaBZHQIs2/StvGZN1fZQoaAZoCWgPQwiho1Ut6XRgQJSGlFKUaBVN6ANoFkdAizmHzH0btXV9lChoBmgJaA9DCEnZImk3oFlAlIaUUpRoFU3oA2gWR0CLOY3EyckMdX2UKGgGaAloD0MIezL/6JtYUUCUhpRSlGgVTegDaBZHQItBgBPsRg91fZQoaAZoCWgPQwjqB3WRQkZeQJSGlFKUaBVN6ANoFkdAi1GA7o0Q9XV9lChoBmgJaA9DCLx1/u2yBl9AlIaUUpRoFU3oA2gWR0CLVxBRhttRdX2UKGgGaAloD0MI9ifxuRO0IcCUhpRSlGgVTRMBaBZHQItipz/6wdN1fZQoaAZoCWgPQwgb2ZWWkahPQJSGlFKUaBVN6ANoFkdAi2zy9ugpSnV9lChoBmgJaA9DCAAce/ZcuGRAlIaUUpRoFU3oA2gWR0CLg+isXBP9dX2UKGgGaAloD0MIks7AyMvOVECUhpRSlGgVTegDaBZHQIuUY/HHWBl1fZQoaAZoCWgPQwicvwmFCOhWQJSGlFKUaBVN6ANoFkdAi5yUwJw84nV9lChoBmgJaA9DCMh4lEr44mBAlIaUUpRoFU3oA2gWR0CLoSnw5NoKdX2UKGgGaAloD0MIJhsPtthtYkCUhpRSlGgVTegDaBZHQIuteShakh11fZQoaAZoCWgPQwgC9Pv+TXpgQJSGlFKUaBVN6ANoFkdAi7vyO7xusXV9lChoBmgJaA9DCG7b96i/EFdAlIaUUpRoFU3oA2gWR0CLy0hN/OMVdX2UKGgGaAloD0MIXVFKCFYPVkCUhpRSlGgVTegDaBZHQIwGNefI0ZZ1fZQoaAZoCWgPQwi7fyxEhy5jQJSGlFKUaBVNWANoFkdAjAtdpqREGHV9lChoBmgJaA9DCHC2uTE9RFhAlIaUUpRoFU3oA2gWR0CMFegLZzxPdX2UKGgGaAloD0MIs7W+SGgrVkCUhpRSlGgVTegDaBZHQIwkLZ13dKx1fZQoaAZoCWgPQwgdIm5OpYhkQJSGlFKUaBVN6ANoFkdAjC2bwjMV13V9lChoBmgJaA9DCDHPSlpxAWlAlIaUUpRoFU0gAmgWR0CMLwC5EtuldX2UKGgGaAloD0MIgCxEh8BBU0CUhpRSlGgVTegDaBZHQIw+3pSrHVB1fZQoaAZoCWgPQwjWjAxyF6BcQJSGlFKUaBVN6ANoFkdAjER7AtWdVnV9lChoBmgJaA9DCECgM2nThmRAlIaUUpRoFU3oA2gWR0CMT7gydnTRdX2UKGgGaAloD0MI0JhJ1AtjU0CUhpRSlGgVTegDaBZHQIxYxGx2SuB1fZQoaAZoCWgPQwi/9PbnostPwJSGlFKUaBVNMQFoFkdAjF94Kx9oe3V9lChoBmgJaA9DCH8WS5H8uWNAlIaUUpRoFU0sAmgWR0CMX6CKaXrudX2UKGgGaAloD0MIeA360tsEUkCUhpRSlGgVTegDaBZHQIxrTc2zfJp1fZQoaAZoCWgPQwhZUBiUaTToP5SGlFKUaBVNMAFoFkdAjG6CGvfTC3V9lChoBmgJaA9DCPyohv2e8EvAlIaUUpRoFU0+AWgWR0CMddbILgGbdX2UKGgGaAloD0MI7ZxmgXZuXECUhpRSlGgVTegDaBZHQIx9/xhDw6R1fZQoaAZoCWgPQwjgEKrU7JpWQJSGlFKUaBVN6ANoFkdAjIGZRCQcP3V9lChoBmgJaA9DCHnqkQa3G2RAlIaUUpRoFU0mAmgWR0CMheozeoDQdX2UKGgGaAloD0MIwO0JEtspY0CUhpRSlGgVTegDaBZHQIyLEyLyc1B1fZQoaAZoCWgPQwjoTxvV6fRfQJSGlFKUaBVN6ANoFkdAjJYCnYQJ5XV9lChoBmgJaA9DCI8AbhYvW2JAlIaUUpRoFU3oA2gWR0CMpeduHerNdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a103016522c76e404a23d09dadd94d3a0255a561bb2cd55e0a8b70292bd9476b
|
3 |
+
size 144156
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fc58de2be60>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc58de2bef0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc58de2bf80>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc58de32050>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fc58de320e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fc58de32170>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc58de32200>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fc58de32290>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc58de32320>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc58de323b0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc58de32440>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fc58de825d0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1653067301.4102688,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAA+nQFPqeDNj9ajDI+gtsvvk9qTj2yrZA7AAAAAAAAAABAGq+99uxbuqMazrtfaaw2xCBMOZuHGrYAAIA/AACAPwBIqDyuSYK60XoauXzGtrTkhmU7CrMvOAAAgD8AAIA/mqiAPBQMg7rwtCk6/WfRte/qqzhqEMm0AACAPwAAgD8As7M9uPa1uao+Xzv1eFk2bTW9ujoLgroAAIA/AACAP2Y2Kj4k+E88cjegusbcDbnKIuM901IJugAAgD8AAIA/pmIbvq524Dsmls86hpmBuCIyfb1lsgW6AACAPwAAgD+dAvc+gBWCPsDRJL3CQsO9KdNxPLiB77wAAAAAAAAAAOA/Vj7NxJY+1lDrPRCgFr4/uNe8OXqWPQAAAAAAAAAAjX6IPRN3qT9dz+A+xguzvmfjDT04okY9AAAAAAAAAABNSQ0+iIjoPu9jCL01BxC+Fgo4PG31b70AAAAAAAAAAK03HT4cVxm8a6mUu1K95jm/JX+9cX/COgAAAAAAAIA/E/+CPh+XsjpITww8hgZMvuBRxDyOVt08AAAAAAAAAAAzsi4+n2KZu87m9bm0CFQ3sb0GvRxSDzkAAIA/AACAP+3mTj5F0/08SkZWOgRpKTmpq4w+Ie2nuQAAgD8AAIA/oDqjPlLemT4BarG9QDGHvhXswTzN5ri9AAAAAAAAAACUdJRiLg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gASVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsIwN3ezfLcCUhpRSlIwBbJRNPQGMAXSUR0CH6uqd6LOzdX2UKGgGaAloD0MIclDCTNtDXUCUhpRSlGgVTegDaBZHQIfrF7BwdbR1fZQoaAZoCWgPQwjoTrD/OtpcQJSGlFKUaBVN6ANoFkdAh/tpNTLntHV9lChoBmgJaA9DCKw41VqYLlZAlIaUUpRoFU3oA2gWR0CH+8nndO6/dX2UKGgGaAloD0MIflTDfk9GW0CUhpRSlGgVTegDaBZHQIgApjhDPWx1fZQoaAZoCWgPQwhyhuKOtyloQJSGlFKUaBVNrANoFkdAiA9TaK1og3V9lChoBmgJaA9DCBhbCHJQCVdAlIaUUpRoFU3oA2gWR0CIUqH8jzI4dX2UKGgGaAloD0MIjNe8qrNYU8CUhpRSlGgVTUsBaBZHQIhaJ7LMcIZ1fZQoaAZoCWgPQwj2Kcdk8VNmQJSGlFKUaBVNXwJoFkdAiGRpFTefqXV9lChoBmgJaA9DCD6WPnRBZ19AlIaUUpRoFU3oA2gWR0CIgNEZzgdfdX2UKGgGaAloD0MIAOFDiRamYECUhpRSlGgVTegDaBZHQIiBZQYUFjd1fZQoaAZoCWgPQwgBipElc9RPQJSGlFKUaBVN6ANoFkdAiIPCQtBfKXV9lChoBmgJaA9DCNtPxvgwSV9AlIaUUpRoFU3oA2gWR0CIg8qPOpsHdX2UKGgGaAloD0MIOUNxx5vhXkCUhpRSlGgVTegDaBZHQIiNPtKIznB1fZQoaAZoCWgPQwiD+MCO/8BcQJSGlFKUaBVN6ANoFkdAiJ0rb5/LDHV9lChoBmgJaA9DCIsyG2SSqldAlIaUUpRoFU3oA2gWR0CIoshTOxB3dX2UKGgGaAloD0MIgPRNmgYlMcCUhpRSlGgVTUkBaBZHQIi5PD1oQFt1fZQoaAZoCWgPQwjGUbmJWhdiQJSGlFKUaBVN6ANoFkdAiM7Ljo6jnHV9lChoBmgJaA9DCPDbEOM1Y1pAlIaUUpRoFU3oA2gWR0CI0eMaS9uhdX2UKGgGaAloD0MIsOJUa2HzU0CUhpRSlGgVTegDaBZHQIjkhBVuJk51fZQoaAZoCWgPQwi688RztnpfQJSGlFKUaBVN6ANoFkdAiOTrZJ04i3V9lChoBmgJaA9DCFH4bB0cfVtAlIaUUpRoFU3oA2gWR0CI6mXdj5KwdX2UKGgGaAloD0MIsrrVc9IbPcCUhpRSlGgVTQcCaBZHQIju1QwblzV1fZQoaAZoCWgPQwhLrIxGPpVSQJSGlFKUaBVN6ANoFkdAiPs0QbuMM3V9lChoBmgJaA9DCNhkjXqI2V9AlIaUUpRoFU3oA2gWR0CJCPAZbY9QdX2UKGgGaAloD0MIW+832nEoYECUhpRSlGgVTegDaBZHQIlG5XGOuJV1fZQoaAZoCWgPQwjG4GHaN+9FwJSGlFKUaBVNAgFoFkdAiUonoX9BKXV9lChoBmgJaA9DCOpYpfRMBVRAlIaUUpRoFU3oA2gWR0CJUdkauOjqdX2UKGgGaAloD0MILlkV4aaEZ0CUhpRSlGgVTfEBaBZHQIlheOEM9bJ1fZQoaAZoCWgPQwgvpMNDGLZZQJSGlFKUaBVN6ANoFkdAiW2GRNh3JXV9lChoBmgJaA9DCEaYolwaJFtAlIaUUpRoFU3oA2gWR0CJcIPXkHUudX2UKGgGaAloD0MIOdBDbRt2XkCUhpRSlGgVTegDaBZHQIlwisbNr0t1fZQoaAZoCWgPQwj+1eO+1cY0wJSGlFKUaBVNRQFoFkdAiYNCONo8IXV9lChoBmgJaA9DCJMdG4F4vVpAlIaUUpRoFU3oA2gWR0CJi1TOPeYVdX2UKGgGaAloD0MId6OP+YDEVECUhpRSlGgVTegDaBZHQImRTU1AJLN1fZQoaAZoCWgPQwi5ADRKl1BhQJSGlFKUaBVN6ANoFkdAiaczCtRvWHV9lChoBmgJaA9DCACt+fGXvFhAlIaUUpRoFU3oA2gWR0CJvZhjOLR8dX2UKGgGaAloD0MIwmnBi77FWkCUhpRSlGgVTegDaBZHQInQl2q1gIB1fZQoaAZoCWgPQwh6VtKKb2JaQJSGlFKUaBVN6ANoFkdAidaMnqmj03V9lChoBmgJaA9DCOcZ+5KNimJAlIaUUpRoFU3oA2gWR0CJ2wVqveP8dX2UKGgGaAloD0MIcLVOXI4nXUCUhpRSlGgVTegDaBZHQInm60D2alV1fZQoaAZoCWgPQwhiSbn7HLNXQJSGlFKUaBVN6ANoFkdAifTE5yU9p3V9lChoBmgJaA9DCE2jycUYCmRAlIaUUpRoFU3oA2gWR0CJ/IHdGiHqdX2UKGgGaAloD0MI5X/yd29saUCUhpRSlGgVTaQCaBZHQIo2l7D2rXF1fZQoaAZoCWgPQwgs8uuH2I5EwJSGlFKUaBVNEgFoFkdAijlgmJFb3XV9lChoBmgJaA9DCNaLoZxoYlhAlIaUUpRoFU3oA2gWR0CKPWPZqVQidX2UKGgGaAloD0MIrFPle0baTECUhpRSlGgVTegDaBZHQIpMACGN70F1fZQoaAZoCWgPQwiimpKsw4teQJSGlFKUaBVN6ANoFkdAilbmlhw2l3V9lChoBmgJaA9DCBwpWyTt91ZAlIaUUpRoFU3oA2gWR0CKWYljVhCudX2UKGgGaAloD0MIxR7axwqsWkCUhpRSlGgVTegDaBZHQIpZkU21lXl1fZQoaAZoCWgPQwgNUYU/w1sgQJSGlFKUaBVNHQFoFkdAimEhqj8DS3V9lChoBmgJaA9DCIWWdf9YBDPAlIaUUpRoFU1wAWgWR0CKcQPWhAW0dX2UKGgGaAloD0MIEtkHWZYsYECUhpRSlGgVTegDaBZHQIpxMOoYNy51fZQoaAZoCWgPQwh5BaInZVlYQJSGlFKUaBVN6ANoFkdAinaQK0D2anV9lChoBmgJaA9DCDNRhNTtW1RAlIaUUpRoFU3oA2gWR0CKi+yylenidX2UKGgGaAloD0MIBirj3+dmZUCUhpRSlGgVTegDaBZHQIqigIOYplV1fZQoaAZoCWgPQwjHD5VGzOg+wJSGlFKUaBVNagFoFkdAirIRB3RoiHV9lChoBmgJaA9DCGXEBaBRSWJAlIaUUpRoFU3oA2gWR0CKudNSIgvEdX2UKGgGaAloD0MIL6aZ7nUwX0CUhpRSlGgVTegDaBZHQIq+OPcSGrV1fZQoaAZoCWgPQwhiLqnabrVTQJSGlFKUaBVN6ANoFkdAiskth3JPqXV9lChoBmgJaA9DCH7k1qTbLWBAlIaUUpRoFU3oA2gWR0CK1cNx2jfvdX2UKGgGaAloD0MIxEFClC/UXkCUhpRSlGgVTegDaBZHQIsZKXjU/fR1fZQoaAZoCWgPQwgYeVkTC+FjQJSGlFKUaBVN6ANoFkdAix0dSde6Z3V9lChoBmgJaA9DCOPdkbHatlJAlIaUUpRoFU3oA2gWR0CLK9+irT6SdX2UKGgGaAloD0MICJRNucLnYECUhpRSlGgVTegDaBZHQIs2/StvGZN1fZQoaAZoCWgPQwiho1Ut6XRgQJSGlFKUaBVN6ANoFkdAizmHzH0btXV9lChoBmgJaA9DCEnZImk3oFlAlIaUUpRoFU3oA2gWR0CLOY3EyckMdX2UKGgGaAloD0MIezL/6JtYUUCUhpRSlGgVTegDaBZHQItBgBPsRg91fZQoaAZoCWgPQwjqB3WRQkZeQJSGlFKUaBVN6ANoFkdAi1GA7o0Q9XV9lChoBmgJaA9DCLx1/u2yBl9AlIaUUpRoFU3oA2gWR0CLVxBRhttRdX2UKGgGaAloD0MI9ifxuRO0IcCUhpRSlGgVTRMBaBZHQItipz/6wdN1fZQoaAZoCWgPQwgb2ZWWkahPQJSGlFKUaBVN6ANoFkdAi2zy9ugpSnV9lChoBmgJaA9DCAAce/ZcuGRAlIaUUpRoFU3oA2gWR0CLg+isXBP9dX2UKGgGaAloD0MIks7AyMvOVECUhpRSlGgVTegDaBZHQIuUY/HHWBl1fZQoaAZoCWgPQwicvwmFCOhWQJSGlFKUaBVN6ANoFkdAi5yUwJw84nV9lChoBmgJaA9DCMh4lEr44mBAlIaUUpRoFU3oA2gWR0CLoSnw5NoKdX2UKGgGaAloD0MIJhsPtthtYkCUhpRSlGgVTegDaBZHQIuteShakh11fZQoaAZoCWgPQwgC9Pv+TXpgQJSGlFKUaBVN6ANoFkdAi7vyO7xusXV9lChoBmgJaA9DCG7b96i/EFdAlIaUUpRoFU3oA2gWR0CLy0hN/OMVdX2UKGgGaAloD0MIXVFKCFYPVkCUhpRSlGgVTegDaBZHQIwGNefI0ZZ1fZQoaAZoCWgPQwi7fyxEhy5jQJSGlFKUaBVNWANoFkdAjAtdpqREGHV9lChoBmgJaA9DCHC2uTE9RFhAlIaUUpRoFU3oA2gWR0CMFegLZzxPdX2UKGgGaAloD0MIs7W+SGgrVkCUhpRSlGgVTegDaBZHQIwkLZ13dKx1fZQoaAZoCWgPQwgdIm5OpYhkQJSGlFKUaBVN6ANoFkdAjC2bwjMV13V9lChoBmgJaA9DCDHPSlpxAWlAlIaUUpRoFU0gAmgWR0CMLwC5EtuldX2UKGgGaAloD0MIgCxEh8BBU0CUhpRSlGgVTegDaBZHQIw+3pSrHVB1fZQoaAZoCWgPQwjWjAxyF6BcQJSGlFKUaBVN6ANoFkdAjER7AtWdVnV9lChoBmgJaA9DCECgM2nThmRAlIaUUpRoFU3oA2gWR0CMT7gydnTRdX2UKGgGaAloD0MI0JhJ1AtjU0CUhpRSlGgVTegDaBZHQIxYxGx2SuB1fZQoaAZoCWgPQwi/9PbnostPwJSGlFKUaBVNMQFoFkdAjF94Kx9oe3V9lChoBmgJaA9DCH8WS5H8uWNAlIaUUpRoFU0sAmgWR0CMX6CKaXrudX2UKGgGaAloD0MIeA360tsEUkCUhpRSlGgVTegDaBZHQIxrTc2zfJp1fZQoaAZoCWgPQwhZUBiUaTToP5SGlFKUaBVNMAFoFkdAjG6CGvfTC3V9lChoBmgJaA9DCPyohv2e8EvAlIaUUpRoFU0+AWgWR0CMddbILgGbdX2UKGgGaAloD0MI7ZxmgXZuXECUhpRSlGgVTegDaBZHQIx9/xhDw6R1fZQoaAZoCWgPQwjgEKrU7JpWQJSGlFKUaBVN6ANoFkdAjIGZRCQcP3V9lChoBmgJaA9DCHnqkQa3G2RAlIaUUpRoFU0mAmgWR0CMheozeoDQdX2UKGgGaAloD0MIwO0JEtspY0CUhpRSlGgVTegDaBZHQIyLEyLyc1B1fZQoaAZoCWgPQwjoTxvV6fRfQJSGlFKUaBVN6ANoFkdAjJYCnYQJ5XV9lChoBmgJaA9DCI8AbhYvW2JAlIaUUpRoFU3oA2gWR0CMpeduHerNdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:47a771b39ee387c8a3c40011dd779494f1f2d96f0907629154aedd59c1f7ec35
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9aadabe938e71c5e689b9b6d83a8f53f29b9283cebeb1e13aab04f93f76a8a5
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1d2bbeb396307fc2c85bbe2abb19e6f2034ca9a462c45f55499847b4ad8139a5
|
3 |
+
size 237888
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 12.565464430704058, "std_reward": 37.00130639523706, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-20T17:58:16.529480"}
|