|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import CrossEntropyLoss |
|
|
|
from transformers import AutoConfig, AutoModelForCausalLM |
|
from llava.model.language_model.internlm2.modeling_internlm2 import InternLM2ForCausalLM, InternLM2Model |
|
from llava.model.language_model.internlm2.configuration_internlm2 import InternLM2Config |
|
|
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
from transformers.generation.utils import GenerateOutput |
|
|
|
from llava.model.llava_arch import LlavaMetaModel, LlavaMetaForCausalLM |
|
from llava.utils import rank0_print |
|
|
|
|
|
|
|
class LlavaInternlm2Config(InternLM2Config): |
|
model_type = "llava_internlm2" |
|
|
|
|
|
class LlavaInternlm2Model(LlavaMetaModel, InternLM2Model): |
|
config_class = LlavaInternlm2Config |
|
|
|
def __init__(self, config: InternLM2Config): |
|
super(LlavaInternlm2Model, self).__init__(config) |
|
|
|
|
|
class LlavaInternlm2ForCausalLM(InternLM2ForCausalLM, LlavaMetaForCausalLM): |
|
config_class = LlavaInternlm2Config |
|
|
|
def __init__(self, config): |
|
|
|
InternLM2ForCausalLM.__init__(self, config) |
|
self.model = LlavaInternlm2Model(config) |
|
|
|
self.vocab_size = config.vocab_size |
|
self.datatype_loss = config.datatype_loss if hasattr(config, "datatype_loss") else False |
|
if self.datatype_loss: |
|
rank0_print("Logging per datatype loss") |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
|
|
self.post_init() |
|
|
|
def get_model(self): |
|
return self.model |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
images: Optional[torch.FloatTensor] = None, |
|
image_sizes: Optional[List[List[int]]] = None, |
|
modalities: Optional[List[str]] = ["image"], |
|
data_type: Optional[str] = "normal", |
|
return_dict: Optional[bool] = None, |
|
dpo_forward: Optional[bool] = False, |
|
cache_position=None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
|
|
if inputs_embeds is None: |
|
(input_ids, position_ids, attention_mask, past_key_values, inputs_embeds, labels) = ( |
|
self.prepare_inputs_labels_for_multimodal( |
|
input_ids, position_ids, attention_mask, past_key_values, labels, images, image_sizes |
|
) |
|
) |
|
if not self.datatype_loss: |
|
if dpo_forward: |
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.output(hidden_states) |
|
return logits, labels |
|
else: |
|
return super().forward( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
labels=labels, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
else: |
|
output_attentions = ( |
|
output_attentions if output_attentions is not None else self.config.output_attentions |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.output(hidden_states) |
|
logits = logits.float() |
|
|
|
loss = None |
|
per_sample_losses = None |
|
|
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
|
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
|
|
|
|
|
|
|
|
loss_fct = CrossEntropyLoss(reduction="none") |
|
token_losses = loss_fct(shift_logits, shift_labels) |
|
|
|
|
|
token_losses = token_losses.view(-1, shift_logits.size(0) // inputs_embeds.size(0)) |
|
|
|
|
|
|
|
|
|
|
|
active_tokens = (shift_labels != -100).view(-1, token_losses.size(1)) |
|
token_losses *= active_tokens |
|
|
|
|
|
per_sample_losses = token_losses.sum(dim=1) / active_tokens.sum(dim=1).clamp(min=1) |
|
|
|
|
|
loss = per_sample_losses.mean() |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
output = CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
output['logits'] = output['logits'].to(device) |
|
|
|
output["per_sample_losses"] = per_sample_losses |
|
|
|
return output |
|
|
|
@torch.no_grad() |
|
def generate( |
|
self, |
|
inputs: Optional[torch.Tensor] = None, |
|
images: Optional[torch.Tensor] = None, |
|
image_sizes: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> Union[GenerateOutput, torch.LongTensor]: |
|
position_ids = kwargs.pop("position_ids", None) |
|
attention_mask = kwargs.pop("attention_mask", None) |
|
if "inputs_embeds" in kwargs: |
|
raise NotImplementedError("`inputs_embeds` is not supported") |
|
|
|
if images is not None: |
|
(inputs, position_ids, attention_mask, _, inputs_embeds, _) = ( |
|
self.prepare_inputs_labels_for_multimodal( |
|
inputs, position_ids, attention_mask, None, None, images, image_sizes=image_sizes |
|
) |
|
) |
|
else: |
|
inputs_embeds = self.get_model().get_input_embeddings()(inputs) |
|
|
|
return super().generate( |
|
position_ids=position_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, **kwargs |
|
) |
|
|
|
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): |
|
images = kwargs.pop("images", None) |
|
image_sizes = kwargs.pop("image_sizes", None) |
|
inputs = super().prepare_inputs_for_generation( |
|
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs |
|
) |
|
if images is not None: |
|
inputs['images'] = images |
|
if image_sizes is not None: |
|
inputs['image_sizes'] = image_sizes |
|
return inputs |
|
|
|
|
|
AutoConfig.register("llava_internlm2", LlavaInternlm2Config) |
|
AutoModelForCausalLM.register(LlavaInternlm2Config, LlavaInternlm2ForCausalLM) |
|
|