SalazarPevelll
td
d5fa9ad
import torch
import torch.nn as nn
import os
__all__ = [
"ResNet",
"resnet18_with_dropout",
"resnet18",
"dropout_resnet18"
]
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
"""3x3 convolution with padding"""
return nn.Conv2d(
in_planes,
out_planes,
kernel_size=3,
stride=stride,
padding=dilation,
groups=groups,
bias=False,
dilation=dilation,
)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(
self,
inplanes,
planes,
stride=1,
downsample=None,
groups=1,
base_width=64,
dilation=1,
norm_layer=None,
):
super(BasicBlock, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError("BasicBlock only supports groups=1 and base_width=64")
if dilation > 1:
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = norm_layer(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = norm_layer(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class BasicBlock_withDropout(nn.Module):
expansion = 1
def __init__(
self,
inplanes,
planes,
stride=1,
downsample=None,
groups=1,
base_width=64,
dilation=1,
norm_layer=None,
):
super(BasicBlock_withDropout, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError("BasicBlock only supports groups=1 and base_width=64")
if dilation > 1:
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.dropout = nn.Dropout(p=0.5)
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = norm_layer(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = norm_layer(planes)
self.downsample = downsample
self.stride = stride
# print('with_dropout',self.with_dropout)
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(
self,
inplanes,
planes,
stride=1,
downsample=None,
groups=1,
base_width=64,
dilation=1,
norm_layer=None,
):
super(Bottleneck, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
width = int(planes * (base_width / 64.0)) * groups
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv1x1(inplanes, width)
self.bn1 = norm_layer(width)
self.conv2 = conv3x3(width, width, stride, groups, dilation)
self.bn2 = norm_layer(width)
self.conv3 = conv1x1(width, planes * self.expansion)
self.bn3 = norm_layer(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(
self,
block,
layers,
with_dropout,
num_classes=10,
zero_init_residual=False,
groups=1,
width_per_group=64,
replace_stride_with_dilation=None,
norm_layer=None,
):
super(ResNet, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self._norm_layer = norm_layer
self.inplanes = 64
self.dilation = 1
if replace_stride_with_dilation is None:
# each element in the tuple indicates if we should replace
# the 2x2 stride with a dilated convolution instead
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError(
"replace_stride_with_dilation should be None "
"or a 3-element tuple, got {}".format(replace_stride_with_dilation)
)
self.with_dropout = with_dropout
self.groups = groups
self.base_width = width_per_group
# CIFAR10: kernel_size 7 -> 3, stride 2 -> 1, padding 3->1
self.conv1 = nn.Conv2d(
3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False
)
# END
self.bn1 = norm_layer(self.inplanes)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(
block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0]
)
self.layer3 = self._make_layer(
block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1]
)
self.layer4 = self._make_layer(
block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2]
)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
if self.with_dropout:
self.fc = nn.Sequential(nn.Flatten(),nn.Dropout(0.5),nn.Linear(512 * block.expansion, num_classes))
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0)
def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
norm_layer = self._norm_layer
downsample = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = 1
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
norm_layer(planes * block.expansion),
)
layers = []
layers.append(
block(
self.inplanes,
planes,
stride,
downsample,
self.groups,
self.base_width,
previous_dilation,
norm_layer,
)
)
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(
block(
self.inplanes,
planes,
groups=self.groups,
base_width=self.base_width,
dilation=self.dilation,
norm_layer=norm_layer,
)
)
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.reshape(x.size(0), -1)
x = self.fc(x)
return x
def feature(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.reshape(x.size(0), -1)
return x
def prediction(self,x):
x = self.fc(x)
return x
# def gap(self, x):
# x = self.conv1(x)
# x = self.bn1(x)
# x = self.relu(x)
# x = self.maxpool(x)
# x = self.layer1(x)
# x = self.layer2(x)
# x = self.layer3(x)
# x = self.layer4(x)
# x = self.avgpool(x)
# x = x.reshape(x.size(0), -1)
# return x
def _resnet(arch, block, layers, pretrained, progress, device, with_dropout, **kwargs):
model = ResNet(block, layers, with_dropout, **kwargs)
if pretrained:
script_dir = os.path.dirname(__file__)
state_dict = torch.load(
script_dir + "/state_dicts/" + arch + ".pt", map_location=device
)
model.load_state_dict(state_dict)
return model
def resnet18_with_dropout(pretrained=False, progress=True, device="cpu", **kwargs):
"""Constructs a ResNet-18 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _resnet(
"resnet18", BasicBlock_withDropout, [2, 2, 2, 2], pretrained, progress, device, with_dropout = True, **kwargs
)
def resnet18(pretrained=False, progress=True, device="cpu", **kwargs):
"""Constructs a ResNet-18 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _resnet(
"resnet18", BasicBlock, [2, 2, 2, 2], pretrained, progress, device, with_dropout = False, **kwargs
)
def resnet34(pretrained=False, progress=True, device="cpu", **kwargs):
"""Constructs a ResNet-34 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _resnet(
"resnet34", BasicBlock, [3, 4, 6, 3], pretrained, progress, device, **kwargs
)
def resnet50(pretrained=False, progress=True, device="cpu", **kwargs):
"""Constructs a ResNet-50 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _resnet(
"resnet50", Bottleneck, [3, 4, 6, 3], pretrained, progress, device, **kwargs
)
# class dropout_residual(nn.Module):
# def __init__(self, input_channels, num_channels, dropout_rate, dropout_type, init_dict, use_1x1conv=False, strides=1, **kwargs):
# super().__init__(**kwargs)
# self.conv1 = Dropout_Conv2D(input_channels, num_channels, kernel_size=3, padding=1, stride=strides, dropout_rate=dropout_rate, dropout_type=dropout_type, init_dict=init_dict)
# self.conv2 = Dropout_Conv2D(num_channels, num_channels, kernel_size=3, padding=1, dropout_rate=dropout_rate, dropout_type=dropout_type, init_dict=init_dict)
# if use_1x1conv:
# self.conv3 = Dropout_Conv2D(input_channels, num_channels, kernel_size=1, stride=strides, dropout_rate=dropout_rate, dropout_type=dropout_type)
# else:
# self.conv3 = None
# self.bn1 = nn.BatchNorm2d(num_channels)
# self.bn2 = nn.BatchNorm2d(num_channels)
# def dropout_resnet_block(input_channels, num_channels, num_residuals, dropout_rate, dropout_type, init_dict, first_block=False):
# blk = []
# for i in range(num_residuals):
# if i == 0 and not first_block:
# blk.append(dropout_residual(input_channels, num_channels, dropout_rate=dropout_rate, dropout_type=dropout_type, init_dict=init_dict, use_1x1conv=True, strides=2))
# else:
# blk.append(dropout_residual(num_channels, num_channels, dropout_rate=dropout_rate, dropout_type=dropout_type, init_dict=init_dict))
# return blk
# def dropout_resnet18(dropout_rate=0.5, dropout_type="w", init_dict=dict()):
# b1 = nn.Sequential(
# Dropout_Conv2D(1, 64, kernel_size=7, stride=2, padding=3, dropout_rate=dropout_rate, dropout_type=dropout_type, init_dict=init_dict),
# nn.BatchNorm2d(64),
# nn.ReLU(),
# nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
# )
# b2 = nn.Sequential(*dropout_resnet_block(64, 64, 2, dropout_rate=dropout_rate, dropout_type=dropout_type, init_dict=init_dict, first_block=True))
# b3 = nn.Sequential(*dropout_resnet_block(64, 128, 2, dropout_rate=dropout_rate, dropout_type=dropout_type, init_dict=init_dict))
# b4 = nn.Sequential(*dropout_resnet_block(128, 256, 2, dropout_rate=dropout_rate, dropout_type=dropout_type, init_dict=init_dict))
# b5 = nn.Sequential(*dropout_resnet_block(256, 512, 2, dropout_rate=dropout_rate, dropout_type=dropout_type, init_dict=init_dict))
# return nn.Sequential(b1, b2, b3, b4, b5,
# nn.AdaptiveAvgPool2d((1,1)),
# nn.Flatten(),
# Dropout_Linear(512, 20, dropout_rate=dropout_rate, dropout_type=dropout_type, init_dict=init_dict))