Periramm commited on
Commit
85bff61
·
1 Parent(s): 08817f8

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1411.46 +/- 321.98
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07b8bfe18362c286d3a6001f3725a34308f548cd61314171330b72bdd0ac4318
3
+ size 129265
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7bfda3ac10>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7bfda3aca0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7bfda3ad30>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7bfda3adc0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f7bfda3ae50>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f7bfda3aee0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7bfda3af70>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7bfda3e040>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f7bfda3e0d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7bfda3e160>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7bfda3e1f0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7bfda3e280>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f7bfda3ba00>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1679923144539337619,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHsGWT+LYYw/CtFYv7M5mr6+MC2+ibwzP8W7IkDA9R2/Xlifv36WQr71HpU9CLwDP9blwj/MuD67OD2Tv33mBD8dPbm/3JL2O4hmxT7a27U8uJvRviSf377wdjS/WkskvlA2Kr+Lmq6/3jicPoo3Lz+Ihko+t+JyP1q7FL++KIw/S/HqPpR1F8CA4Be/TjN/P/F3sT6Vbps/+7abPwbIKz8Zf8K/J69MPrKIuj49u1M/PHC3v+AfAD9UI6C/vdNcP+djtT+k5c69/cKbvt26aL9QNiq/i5quv6nAUcCNA7u/xKKWPakJFT/1/7W9D2TiPqMKLD7BGxo/HN18P8jxhz+4PUI+Psw+vobZkD+XFzm/s5hWvxyx2T9YV+K9cELBv5wKIb9P1lU/cFjyvqyTwz9zmJU/2GpavmHK+r7LTWY/UDYqv4uarr/eOJw+ijcvP+f4P7+5Nqy+nDIcP8EQR77dI7a+YkcYvu8p0T7cYgk/jFZhvbFKorwSL4U+G58Hv+sWRT7QP84/wY30vdpIUkDzZN2+48WfPRAKxz6qYZU8d42vP1x6+LoV47q+Oz89P1A2Kr+1qzs/3jicPoo3Lz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABJ0K21AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA129nuwAAAAA1vvC/AAAAACAhDL4AAAAAalXwPwAAAAD2MbA7AAAAAFAw9z8AAAAAiPOKvQAAAAA+nuW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJB6XtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEY6nL0AAAAAqtjmvwAAAAB1koa9AAAAAD0l+D8AAAAAi3fOPAAAAABXmQBAAAAAAGTLqz0AAAAADrzovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIrWj7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBR+Xk8AAAAAHiJ5b8AAAAAJ47tvQAAAAAPwABAAAAAAAILB74AAAAA3jP1PwAAAABGIqi9AAAAAIiKAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB7d741AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAVCqdvQAAAACYLfy/AAAAAGbYAr4AAAAAqSfbPwAAAAAAClc9AAAAANJF+z8AAAAArM9UvQAAAADcnfO/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJFIKgpSaVmMAWyUTegDjAF0lEdAqd2G74BV/HV9lChoBkdAlPJxbW3BpGgHTegDaAhHQKnelikO7QN1fZQoaAZHQJaFs1CPZIxoB03oA2gIR0Cp5HjHGS6ldX2UKGgGR0CMHedq+JxeaAdN6ANoCEdAqeYy7wrlNnV9lChoBkdAk8QX/5tWMmgHTegDaAhHQKnqL9w3o9t1fZQoaAZHQJUNFjd56dFoB03oA2gIR0Cp6tku6ErYdX2UKGgGR0CXByyVv/BFaAdN6ANoCEdAqfCkcOskp3V9lChoBkdAmIEV3MY/FGgHTegDaAhHQKnybgLJCBx1fZQoaAZHQJvNne1rqMZoB03oA2gIR0Cp+Cba7EpBdX2UKGgGR0CdEijXnQpnaAdN6ANoCEdAqfkm3vx6OnV9lChoBkdAnLiiHqNZNmgHTegDaAhHQKoAiFnIyTJ1fZQoaAZHQJr3LUe+23NoB03oA2gIR0CqAj7Ackt3dX2UKGgGR0CdUsbiqABlaAdN6ANoCEdAqgYtW8yvcXV9lChoBkdAnat3/5tWMmgHTegDaAhHQKoG1MC9ytF1fZQoaAZHQJFCKWkadc1oB03oA2gIR0CqDKoqLCN0dX2UKGgGR0CX/CHAAQxvaAdN6ANoCEdAqg5m3z+WGHV9lChoBkdAneyuHnEET2gHTegDaAhHQKoTAY1He8B1fZQoaAZHQJtiehf0EoxoB03oA2gIR0CqE/Cj1wo9dX2UKGgGR0Cbxnz6ab4KaAdN6ANoCEdAqhwZjUd7wHV9lChoBkdAnA/YKIBRymgHTegDaAhHQKodyjwhGH51fZQoaAZHQJElH1bqyGBoB03oA2gIR0CqIa62nbZfdX2UKGgGR0CcRJ3n6l+FaAdN6ANoCEdAqiJU6cRUWHV9lChoBkdAlzo2b5M10mgHTegDaAhHQKooKois4kx1fZQoaAZHQJ12VMPBi1BoB03oA2gIR0CqKfq7I1cddX2UKGgGR0CccJZ1V5ryaAdN6ANoCEdAqi3tTNt65XV9lChoBkdAlkemZqmCRWgHTegDaAhHQKounf6XSjR1fZQoaAZHQIbi6tV7x/doB03oA2gIR0CqNzJgb6xgdX2UKGgGR0CYKJJx//edaAdN6ANoCEdAqjmgPuogm3V9lChoBkdAlkxkJfICEGgHTegDaAhHQKo9oacZtN11fZQoaAZHQJkQFA8jiXJoB03oA2gIR0CqPkZhKDkEdX2UKGgGR0CX6DbWEsasaAdN6ANoCEdAqkQOpKjBVXV9lChoBkdAk6XABtDUmWgHTegDaAhHQKpFw4+bExZ1fZQoaAZHQJeuCmNzbN9oB03oA2gIR0CqSboRIz3zdX2UKGgGR0CdhzE1EVnFaAdN6ANoCEdAqkpc4cWCVnV9lChoBkdAoGYvkcS5AmgHTegDaAhHQKpRcxHG0eF1fZQoaAZHQKCyDCHh0hhoB03oA2gIR0CqVBJtBOYZdX2UKGgGR0CfMWwjMV1waAdN6ANoCEdAqlkTowEhaHV9lChoBkdAoRfDI5o4/GgHTegDaAhHQKpZueumrKh1fZQoaAZHQKEPTfbblBBoB03oA2gIR0CqX2dh7VridX2UKGgGR0CgsmQxnFo+aAdN6ANoCEdAqmEb8tPHk3V9lChoBkdAoJpT6SDAamgHTegDaAhHQKplE1stTUB1fZQoaAZHQKBt+44Ia99oB03oA2gIR0CqZbSzollcdX2UKGgGR0ChNAi5EtulaAdN6ANoCEdAqmutf3N9pnV9lChoBkdAoR5jbg0j1WgHTegDaAhHQKpuJogV45d1fZQoaAZHQKFvC1NxlxxoB03oA2gIR0CqdDKRU3n7dX2UKGgGR0Cg7/WhqTKUaAdN6ANoCEdAqnUx22XsxHV9lChoBkdAoGs4YJmdy2gHTegDaAhHQKp7KSmIj4Z1fZQoaAZHQKDccgAZKnNoB03oA2gIR0CqfOmFBY3edX2UKGgGR0CfPCRplBhQaAdN6ANoCEdAqoDu+ZgG8nV9lChoBkdAoA0FkSVW0mgHTegDaAhHQKqBktZFG5N1fZQoaAZHQJ6Dpk9U0eloB03oA2gIR0Cqh2ToEB8ydX2UKGgGR0CfDjZKnNxEaAdN6ANoCEdAqoko4KhL5HV9lChoBkdAnwohG6PKdWgHTegDaAhHQKqO1DuSfUZ1fZQoaAZHQJ5qP3Zf2K5oB03oA2gIR0Cqj9NWuHN5dX2UKGgGR0CfNr95yEL6aAdN6ANoCEdAqpbaOtGNJnV9lChoBkdAoOGseZG8VmgHTegDaAhHQKqYlQTmGM51fZQoaAZHQJ7rYq4H5ahoB03oA2gIR0CqnIkSVW0adX2UKGgGR0CedOvv0AcUaAdN6ANoCEdAqp04PK+zt3V9lChoBkdAoEd7CrLhaWgHTegDaAhHQKqjJSv1UVB1fZQoaAZHQJ/fXE4vN/xoB03oA2gIR0CqpOHVPN3XdX2UKGgGR0CgrQ92X9iuaAdN6ANoCEdAqql1A7gbZXV9lChoBkdAoSXEx46fa2gHTegDaAhHQKqqaaisXBR1fZQoaAZHQJ5hK2gFotdoB03oA2gIR0CqsqtgSeyzdX2UKGgGR0CghcSOq//OaAdN6ANoCEdAqrSATK1XvHV9lChoBkdAnaQyjtXxOWgHTegDaAhHQKq4hYsd1dR1fZQoaAZHQJvNwV0tAcFoB03oA2gIR0CquSMZgogFdX2UKGgGR0ChGMinP3SKaAdN6ANoCEdAqr7qS1Vo6HV9lChoBkdAoKvaaoddV2gHTegDaAhHQKrArw1BMSN1fZQoaAZHQKEgoFINEw5oB03oA2gIR0CqxKCpm29ddX2UKGgGR0CfYoPzWf9QaAdN6ANoCEdAqsVC8lHBlHV9lChoBkdAmf20SmIj4mgHTegDaAhHQKrNvfReC051fZQoaAZHQJQUbZrYXftoB03oA2gIR0Cq0BYMfA9FdX2UKGgGR0CeZ8mapgkUaAdN6ANoCEdAqtP5b4agmXV9lChoBkdAoA7t2C/XXmgHTegDaAhHQKrUoOUdJat1fZQoaAZHQKAdYT+vQnhoB03oA2gIR0Cq2lqMFUyYdX2UKGgGR0CbYkHRCx/vaAdN6ANoCEdAqtwXi1iON3V9lChoBkdAnwAZ/wy6+WgHTegDaAhHQKrf+H2RJVd1fZQoaAZHQJgRMwudwvRoB03oA2gIR0Cq4KAdOqNqdX2UKGgGR0Cd9Y2ZRbbDaAdN6ANoCEdAque1MRHww3V9lChoBkdAm91A2uPmxWgHTegDaAhHQKrqV0+1Sfl1fZQoaAZHQJn3oNI9TxZoB03oA2gIR0Cq71rVnVXndX2UKGgGR0Cbbl9eyAx0aAdN6ANoCEdAqvAHJNj9XXV9lChoBkdAmCrhQ3xWk2gHTegDaAhHQKr12zeGfwt1fZQoaAZHQJlPWki2UjdoB03oA2gIR0Cq945lOGj9dX2UKGgGR0CcqwBnBciXaAdN6ANoCEdAqvt+AskIHHV9lChoBkdAm86xHG0eEWgHTegDaAhHQKr8Jv60pmV1fZQoaAZHQJs8GFnIyTJoB03oA2gIR0CrAi+A3DNydX2UKGgGR0CZbbKK508vaAdN6ANoCEdAqwSas+3YtnV9lChoBkdAlx63wCr922gHTegDaAhHQKsKkx6fJ3h1fZQoaAZHQJhNO7J4jbBoB03oA2gIR0CrC40x/NJOdX2UKGgGR0CZusYSxqwhaAdN6ANoCEdAqxFJj2BatHV9lChoBkdAg0wLzXjEN2gHTegDaAhHQKsTAPYFqzt1fZQoaAZHQJPsDUaya/hoB03oA2gIR0CrFvHGjsUqdX2UKGgGR0CYyS/R3NcGaAdN6ANoCEdAqxeWRT0g83V9lChoBkdAmZ8jG5tm+WgHTegDaAhHQKsdeA2AG0N1fZQoaAZHQJvAXarWAgBoB03oA2gIR0CrHzPfTCtSdX2UKGgGR0CbkDXGff4zaAdN6ANoCEdAqyTANPP9k3V9lChoBkdAl1Qq6vq1PWgHTegDaAhHQKslvhOP/711fZQoaAZHQJhXXIJZ4fRoB03oA2gIR0CrLPQ2l2vCdX2UKGgGR0CYdPyyD7IlaAdN6ANoCEdAqy6mzOX3QHVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:acad038fef7b3a872adc714a70e04c01697102a480c3dd8b183c762a7e57452a
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1346ea9e18bf8c29da6ca76627824c4014b6572afda2d54223044dc46cd01e0a
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7bfda3ac10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7bfda3aca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7bfda3ad30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7bfda3adc0>", "_build": "<function ActorCriticPolicy._build at 0x7f7bfda3ae50>", "forward": "<function ActorCriticPolicy.forward at 0x7f7bfda3aee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7bfda3af70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7bfda3e040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7bfda3e0d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7bfda3e160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7bfda3e1f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7bfda3e280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7bfda3ba00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679923144539337619, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHsGWT+LYYw/CtFYv7M5mr6+MC2+ibwzP8W7IkDA9R2/Xlifv36WQr71HpU9CLwDP9blwj/MuD67OD2Tv33mBD8dPbm/3JL2O4hmxT7a27U8uJvRviSf377wdjS/WkskvlA2Kr+Lmq6/3jicPoo3Lz+Ihko+t+JyP1q7FL++KIw/S/HqPpR1F8CA4Be/TjN/P/F3sT6Vbps/+7abPwbIKz8Zf8K/J69MPrKIuj49u1M/PHC3v+AfAD9UI6C/vdNcP+djtT+k5c69/cKbvt26aL9QNiq/i5quv6nAUcCNA7u/xKKWPakJFT/1/7W9D2TiPqMKLD7BGxo/HN18P8jxhz+4PUI+Psw+vobZkD+XFzm/s5hWvxyx2T9YV+K9cELBv5wKIb9P1lU/cFjyvqyTwz9zmJU/2GpavmHK+r7LTWY/UDYqv4uarr/eOJw+ijcvP+f4P7+5Nqy+nDIcP8EQR77dI7a+YkcYvu8p0T7cYgk/jFZhvbFKorwSL4U+G58Hv+sWRT7QP84/wY30vdpIUkDzZN2+48WfPRAKxz6qYZU8d42vP1x6+LoV47q+Oz89P1A2Kr+1qzs/3jicPoo3Lz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABJ0K21AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA129nuwAAAAA1vvC/AAAAACAhDL4AAAAAalXwPwAAAAD2MbA7AAAAAFAw9z8AAAAAiPOKvQAAAAA+nuW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJB6XtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEY6nL0AAAAAqtjmvwAAAAB1koa9AAAAAD0l+D8AAAAAi3fOPAAAAABXmQBAAAAAAGTLqz0AAAAADrzovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIrWj7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBR+Xk8AAAAAHiJ5b8AAAAAJ47tvQAAAAAPwABAAAAAAAILB74AAAAA3jP1PwAAAABGIqi9AAAAAIiKAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB7d741AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAVCqdvQAAAACYLfy/AAAAAGbYAr4AAAAAqSfbPwAAAAAAClc9AAAAANJF+z8AAAAArM9UvQAAAADcnfO/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJFIKgpSaVmMAWyUTegDjAF0lEdAqd2G74BV/HV9lChoBkdAlPJxbW3BpGgHTegDaAhHQKnelikO7QN1fZQoaAZHQJaFs1CPZIxoB03oA2gIR0Cp5HjHGS6ldX2UKGgGR0CMHedq+JxeaAdN6ANoCEdAqeYy7wrlNnV9lChoBkdAk8QX/5tWMmgHTegDaAhHQKnqL9w3o9t1fZQoaAZHQJUNFjd56dFoB03oA2gIR0Cp6tku6ErYdX2UKGgGR0CXByyVv/BFaAdN6ANoCEdAqfCkcOskp3V9lChoBkdAmIEV3MY/FGgHTegDaAhHQKnybgLJCBx1fZQoaAZHQJvNne1rqMZoB03oA2gIR0Cp+Cba7EpBdX2UKGgGR0CdEijXnQpnaAdN6ANoCEdAqfkm3vx6OnV9lChoBkdAnLiiHqNZNmgHTegDaAhHQKoAiFnIyTJ1fZQoaAZHQJr3LUe+23NoB03oA2gIR0CqAj7Ackt3dX2UKGgGR0CdUsbiqABlaAdN6ANoCEdAqgYtW8yvcXV9lChoBkdAnat3/5tWMmgHTegDaAhHQKoG1MC9ytF1fZQoaAZHQJFCKWkadc1oB03oA2gIR0CqDKoqLCN0dX2UKGgGR0CX/CHAAQxvaAdN6ANoCEdAqg5m3z+WGHV9lChoBkdAneyuHnEET2gHTegDaAhHQKoTAY1He8B1fZQoaAZHQJtiehf0EoxoB03oA2gIR0CqE/Cj1wo9dX2UKGgGR0Cbxnz6ab4KaAdN6ANoCEdAqhwZjUd7wHV9lChoBkdAnA/YKIBRymgHTegDaAhHQKodyjwhGH51fZQoaAZHQJElH1bqyGBoB03oA2gIR0CqIa62nbZfdX2UKGgGR0CcRJ3n6l+FaAdN6ANoCEdAqiJU6cRUWHV9lChoBkdAlzo2b5M10mgHTegDaAhHQKooKois4kx1fZQoaAZHQJ12VMPBi1BoB03oA2gIR0CqKfq7I1cddX2UKGgGR0CccJZ1V5ryaAdN6ANoCEdAqi3tTNt65XV9lChoBkdAlkemZqmCRWgHTegDaAhHQKounf6XSjR1fZQoaAZHQIbi6tV7x/doB03oA2gIR0CqNzJgb6xgdX2UKGgGR0CYKJJx//edaAdN6ANoCEdAqjmgPuogm3V9lChoBkdAlkxkJfICEGgHTegDaAhHQKo9oacZtN11fZQoaAZHQJkQFA8jiXJoB03oA2gIR0CqPkZhKDkEdX2UKGgGR0CX6DbWEsasaAdN6ANoCEdAqkQOpKjBVXV9lChoBkdAk6XABtDUmWgHTegDaAhHQKpFw4+bExZ1fZQoaAZHQJeuCmNzbN9oB03oA2gIR0CqSboRIz3zdX2UKGgGR0CdhzE1EVnFaAdN6ANoCEdAqkpc4cWCVnV9lChoBkdAoGYvkcS5AmgHTegDaAhHQKpRcxHG0eF1fZQoaAZHQKCyDCHh0hhoB03oA2gIR0CqVBJtBOYZdX2UKGgGR0CfMWwjMV1waAdN6ANoCEdAqlkTowEhaHV9lChoBkdAoRfDI5o4/GgHTegDaAhHQKpZueumrKh1fZQoaAZHQKEPTfbblBBoB03oA2gIR0CqX2dh7VridX2UKGgGR0CgsmQxnFo+aAdN6ANoCEdAqmEb8tPHk3V9lChoBkdAoJpT6SDAamgHTegDaAhHQKplE1stTUB1fZQoaAZHQKBt+44Ia99oB03oA2gIR0CqZbSzollcdX2UKGgGR0ChNAi5EtulaAdN6ANoCEdAqmutf3N9pnV9lChoBkdAoR5jbg0j1WgHTegDaAhHQKpuJogV45d1fZQoaAZHQKFvC1NxlxxoB03oA2gIR0CqdDKRU3n7dX2UKGgGR0Cg7/WhqTKUaAdN6ANoCEdAqnUx22XsxHV9lChoBkdAoGs4YJmdy2gHTegDaAhHQKp7KSmIj4Z1fZQoaAZHQKDccgAZKnNoB03oA2gIR0CqfOmFBY3edX2UKGgGR0CfPCRplBhQaAdN6ANoCEdAqoDu+ZgG8nV9lChoBkdAoA0FkSVW0mgHTegDaAhHQKqBktZFG5N1fZQoaAZHQJ6Dpk9U0eloB03oA2gIR0Cqh2ToEB8ydX2UKGgGR0CfDjZKnNxEaAdN6ANoCEdAqoko4KhL5HV9lChoBkdAnwohG6PKdWgHTegDaAhHQKqO1DuSfUZ1fZQoaAZHQJ5qP3Zf2K5oB03oA2gIR0Cqj9NWuHN5dX2UKGgGR0CfNr95yEL6aAdN6ANoCEdAqpbaOtGNJnV9lChoBkdAoOGseZG8VmgHTegDaAhHQKqYlQTmGM51fZQoaAZHQJ7rYq4H5ahoB03oA2gIR0CqnIkSVW0adX2UKGgGR0CedOvv0AcUaAdN6ANoCEdAqp04PK+zt3V9lChoBkdAoEd7CrLhaWgHTegDaAhHQKqjJSv1UVB1fZQoaAZHQJ/fXE4vN/xoB03oA2gIR0CqpOHVPN3XdX2UKGgGR0CgrQ92X9iuaAdN6ANoCEdAqql1A7gbZXV9lChoBkdAoSXEx46fa2gHTegDaAhHQKqqaaisXBR1fZQoaAZHQJ5hK2gFotdoB03oA2gIR0CqsqtgSeyzdX2UKGgGR0CghcSOq//OaAdN6ANoCEdAqrSATK1XvHV9lChoBkdAnaQyjtXxOWgHTegDaAhHQKq4hYsd1dR1fZQoaAZHQJvNwV0tAcFoB03oA2gIR0CquSMZgogFdX2UKGgGR0ChGMinP3SKaAdN6ANoCEdAqr7qS1Vo6HV9lChoBkdAoKvaaoddV2gHTegDaAhHQKrArw1BMSN1fZQoaAZHQKEgoFINEw5oB03oA2gIR0CqxKCpm29ddX2UKGgGR0CfYoPzWf9QaAdN6ANoCEdAqsVC8lHBlHV9lChoBkdAmf20SmIj4mgHTegDaAhHQKrNvfReC051fZQoaAZHQJQUbZrYXftoB03oA2gIR0Cq0BYMfA9FdX2UKGgGR0CeZ8mapgkUaAdN6ANoCEdAqtP5b4agmXV9lChoBkdAoA7t2C/XXmgHTegDaAhHQKrUoOUdJat1fZQoaAZHQKAdYT+vQnhoB03oA2gIR0Cq2lqMFUyYdX2UKGgGR0CbYkHRCx/vaAdN6ANoCEdAqtwXi1iON3V9lChoBkdAnwAZ/wy6+WgHTegDaAhHQKrf+H2RJVd1fZQoaAZHQJgRMwudwvRoB03oA2gIR0Cq4KAdOqNqdX2UKGgGR0Cd9Y2ZRbbDaAdN6ANoCEdAque1MRHww3V9lChoBkdAm91A2uPmxWgHTegDaAhHQKrqV0+1Sfl1fZQoaAZHQJn3oNI9TxZoB03oA2gIR0Cq71rVnVXndX2UKGgGR0Cbbl9eyAx0aAdN6ANoCEdAqvAHJNj9XXV9lChoBkdAmCrhQ3xWk2gHTegDaAhHQKr12zeGfwt1fZQoaAZHQJlPWki2UjdoB03oA2gIR0Cq945lOGj9dX2UKGgGR0CcqwBnBciXaAdN6ANoCEdAqvt+AskIHHV9lChoBkdAm86xHG0eEWgHTegDaAhHQKr8Jv60pmV1fZQoaAZHQJs8GFnIyTJoB03oA2gIR0CrAi+A3DNydX2UKGgGR0CZbbKK508vaAdN6ANoCEdAqwSas+3YtnV9lChoBkdAlx63wCr922gHTegDaAhHQKsKkx6fJ3h1fZQoaAZHQJhNO7J4jbBoB03oA2gIR0CrC40x/NJOdX2UKGgGR0CZusYSxqwhaAdN6ANoCEdAqxFJj2BatHV9lChoBkdAg0wLzXjEN2gHTegDaAhHQKsTAPYFqzt1fZQoaAZHQJPsDUaya/hoB03oA2gIR0CrFvHGjsUqdX2UKGgGR0CYyS/R3NcGaAdN6ANoCEdAqxeWRT0g83V9lChoBkdAmZ8jG5tm+WgHTegDaAhHQKsdeA2AG0N1fZQoaAZHQJvAXarWAgBoB03oA2gIR0CrHzPfTCtSdX2UKGgGR0CbkDXGff4zaAdN6ANoCEdAqyTANPP9k3V9lChoBkdAl1Qq6vq1PWgHTegDaAhHQKslvhOP/711fZQoaAZHQJhXXIJZ4fRoB03oA2gIR0CrLPQ2l2vCdX2UKGgGR0CYdPyyD7IlaAdN6ANoCEdAqy6mzOX3QHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1dbef75049de8a111276185191597756cbd170c016cdd4e756d9d53046dc7828
3
+ size 1215975
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1411.4596858813384, "std_reward": 321.98187559524223, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-27T14:26:01.281612"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a6a0319a331e5313e711f61f82ba52870d305688e5ee2d2164071427889feb9
3
+ size 2136