PavanDeepak
commited on
Commit
•
e45e266
1
Parent(s):
e5dfaf7
sending in the model
Browse files- README.md +37 -0
- agent47-aware.zip +3 -0
- agent47-aware/_stable_baselines3_version +1 -0
- agent47-aware/data +95 -0
- agent47-aware/policy.optimizer.pth +3 -0
- agent47-aware/policy.pth +3 -0
- agent47-aware/pytorch_variables.pth +3 -0
- agent47-aware/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 206.91 +/- 48.55
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
agent47-aware.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:42bce72aeda6f7c3f569bb146c04ee1e6f63599b1c60cf018430a93f9b14edc8
|
3 |
+
size 147429
|
agent47-aware/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
agent47-aware/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f75ed877310>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f75ed8773a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f75ed877430>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f75ed8774c0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f75ed877550>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f75ed8775e0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f75ed877670>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f75ed877700>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f75ed877790>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f75ed877820>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f75ed8778b0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f75ed877940>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f75ed875ac0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1679092296790909059,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrtGLy0Jp0/HnyCve5ovL62axM8aHgAPQAAAAAAAAAAeo5EvgVYeD4VDuk9fbBSvn2b0DwiYAK9AAAAAAAAAACTADQ+XMRrvKdCCLvjQxs5lP7OvaYuLjoAAIA/AACAP4D+Zj26lik+h+OKvmzO2b2aJxu9as/XvQAAAAAAAAAAM09APj8VAD+acgi+ZbtSvun7ATx7T7O8AAAAAAAAAABmxvW7VAOlP0dkjL0p8qW+d3kjOcoR1rwAAAAAAAAAAFMGPr5vwTY/gvQ6ve6Fdr68Ewm+/sflPAAAAAAAAAAA8xKgvZyOW7zK1uc62dprvB8lxD1iW0A9AACAPwAAgD8A0209w4FcurX7cziA+1QzxiouujGHj7cAAIA/AACAP9qv5r32rAi6RYlAOGQiBzMqA9s6m8BctwAAgD8AAAAARs8lvilVJby6dF2869yfukzZjz2WZIQ7AACAPwAAgD8OXpi+aDLlPkqhJz0jJX2+tfclvZMS270AAAAAAAAAAPOk0b2uB4u6EM8Cu85i4jjvrg47jq2DOQAAgD8AAIA/aoRhvh+oyzx0sB+6I3rBOAW0Xr6NRWQ5AACAPwAAgD/urKe+Sov0PtpbQT1SDoS+YHGvvRokEz0AAAAAAAAAAJC7uj7io6E+pp5yvg9VZr5bbtM8EmetvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIeLmI78QdbkCUhpRSlIwBbJRNHQOMAXSUR0C5+a9+w1R+dX2UKGgGaAloD0MI+KdUibLPNECUhpRSlGgVTREBaBZHQLn6chTOxB51fZQoaAZoCWgPQwgclgZ+VD5uQJSGlFKUaBVNsAJoFkdAuftddHDrJXV9lChoBmgJaA9DCDAvwD56FHBAlIaUUpRoFU1EAWgWR0C6AObfgrH3dX2UKGgGaAloD0MIhEcbR6zLXUCUhpRSlGgVTegDaBZHQLoBkQCCBf91fZQoaAZoCWgPQwgTZARUOCRkQJSGlFKUaBVN6ANoFkdAugG8TVUdaXV9lChoBmgJaA9DCF2j5UCPwW9AlIaUUpRoFU0tA2gWR0C6AgoldC3PdX2UKGgGaAloD0MIzZNrCmSycECUhpRSlGgVTQwCaBZHQLoCESHM2WJ1fZQoaAZoCWgPQwiuuaP/pSdyQJSGlFKUaBVNEgJoFkdAugLkCo0hvHV9lChoBmgJaA9DCOeqeY5IJ2NAlIaUUpRoFU3oA2gWR0C6AwWeg+QmdX2UKGgGaAloD0MIlbVN8ThjbECUhpRSlGgVTcIDaBZHQLoEx1L8Jld1fZQoaAZoCWgPQwiPp+UHrthvQJSGlFKUaBVNugFoFkdAugcZBOYYznV9lChoBmgJaA9DCLr1mh5UdnBAlIaUUpRoFU0VAmgWR0C6B0BYigTRdX2UKGgGaAloD0MI0csolhtocECUhpRSlGgVTV8CaBZHQLoII2USqVB1fZQoaAZoCWgPQwiemPViqMNvQJSGlFKUaBVNOgFoFkdAugg6FtbcGnV9lChoBmgJaA9DCJ3y6EbYMG9AlIaUUpRoFU3kAWgWR0C6CMITj/+9dX2UKGgGaAloD0MIKnPzjeiZcECUhpRSlGgVTa4CaBZHQLoJThY/3WZ1fZQoaAZoCWgPQwj4NCcvslhxQJSGlFKUaBVNrwFoFkdAuglS1y/9HnV9lChoBmgJaA9DCB4zUBl/EXBAlIaUUpRoFU3qAWgWR0C6CmvbGm1qdX2UKGgGaAloD0MIflLt03G3Y0CUhpRSlGgVTegDaBZHQLoKfm7aqS51fZQoaAZoCWgPQwikGYum8ydwQJSGlFKUaBVN7AJoFkdAugqrIaLn93V9lChoBmgJaA9DCDOpoQ1Ap3FAlIaUUpRoFU3oAWgWR0C6C4FU2kzodX2UKGgGaAloD0MIZqGd0ywbYkCUhpRSlGgVTegDaBZHQLoLmOt4iX91fZQoaAZoCWgPQwjpDmJnCl1vQJSGlFKUaBVNbQFoFkdAug3ndtVJc3V9lChoBmgJaA9DCH+mXreI1G9AlIaUUpRoFU25AWgWR0C6DlzzErGzdX2UKGgGaAloD0MIh8PSwI84cECUhpRSlGgVTX4BaBZHQLoOkeJHiFV1fZQoaAZoCWgPQwiQ3Jp028lvQJSGlFKUaBVNpAFoFkdAug6zz+WGAXV9lChoBmgJaA9DCLow0ova0llAlIaUUpRoFU3oA2gWR0C6D1piVjZtdX2UKGgGaAloD0MIKnEd44q4b0CUhpRSlGgVTbYBaBZHQLoP22a2F391fZQoaAZoCWgPQwgfnbryWYttQJSGlFKUaBVNhAFoFkdAuhAEakyk9HV9lChoBmgJaA9DCK5JtyXyjm1AlIaUUpRoFU1sAWgWR0C6FZ5cgQpXdX2UKGgGaAloD0MI+Z6RCA1CcECUhpRSlGgVTRACaBZHQLoWEbXpW3l1fZQoaAZoCWgPQwiHxahr7cRhQJSGlFKUaBVN6ANoFkdAuhYzfZVXFXV9lChoBmgJaA9DCAQEc/T4al9AlIaUUpRoFU3oA2gWR0C6FmVLeyiVdX2UKGgGaAloD0MIilqaWyGeb0CUhpRSlGgVTSsCaBZHQLoXyO4G2Th1fZQoaAZoCWgPQwgz4Zf6eT1uQJSGlFKUaBVNYgFoFkdAuhhy38XN1XV9lChoBmgJaA9DCJ1LcVVZsm1AlIaUUpRoFU1fAmgWR0C6GJHyRSxadX2UKGgGaAloD0MIixnh7cE9cECUhpRSlGgVTVgBaBZHQLoZLYu01Il1fZQoaAZoCWgPQwgNqaJ4lcRtQJSGlFKUaBVNTwNoFkdAuhm/yVfNRnV9lChoBmgJaA9DCFmmXyLeK2BAlIaUUpRoFU3oA2gWR0C6GiyM98qndX2UKGgGaAloD0MIHsTOFDrma0CUhpRSlGgVTbsBaBZHQLoanlrdnCh1fZQoaAZoCWgPQwjd7A+U224uQJSGlFKUaBVNFwFoFkdAuhq2F36hx3V9lChoBmgJaA9DCLuYZrrXzG5AlIaUUpRoFU2zAmgWR0C6GtgQtjCpdX2UKGgGaAloD0MIpS4Zx4hkcECUhpRSlGgVTaABaBZHQLoa1/7zkIZ1fZQoaAZoCWgPQwiB6bRuw/RxQJSGlFKUaBVN+QFoFkdAuhsKswL3K3V9lChoBmgJaA9DCABzLVqAanBAlIaUUpRoFU1KAWgWR0C6HBz7MxGldX2UKGgGaAloD0MI6N1YUJjFbkCUhpRSlGgVTbUBaBZHQLocYPWhAW11fZQoaAZoCWgPQwgXEFoP3xFvQJSGlFKUaBVN5wFoFkdAuhzJVaOghHV9lChoBmgJaA9DCABYHTlSjXBAlIaUUpRoFU1NAWgWR0C6HPaNp/PPdX2UKGgGaAloD0MIGsIxy543a0CUhpRSlGgVTTYBaBZHQLodXTxG2Cx1fZQoaAZoCWgPQwgl58QeGu5xQJSGlFKUaBVNoQFoFkdAuh1/8yeqaXV9lChoBmgJaA9DCLtGy4EeTm9AlIaUUpRoFU18AWgWR0C6HtokZ75VdX2UKGgGaAloD0MI0hvuI7dkcUCUhpRSlGgVTZ8BaBZHQLofUX/o7mx1fZQoaAZoCWgPQwjqJFtdTspwQJSGlFKUaBVN0gFoFkdAuh/L9fkWAXV9lChoBmgJaA9DCNAJoYOuK29AlIaUUpRoFU14AmgWR0C6IB53PiT/dX2UKGgGaAloD0MI1gCloUYrcUCUhpRSlGgVTTYCaBZHQLogOKqXF991fZQoaAZoCWgPQwjZJD/iV9huQJSGlFKUaBVNOAFoFkdAuiDPyNGViXV9lChoBmgJaA9DCJMa2gBsYG1AlIaUUpRoFU16AmgWR0C6IdzwUg0TdX2UKGgGaAloD0MIDqK1os0BZECUhpRSlGgVTegDaBZHQLoh9oHcDbJ1fZQoaAZoCWgPQwip3EQtza9lQJSGlFKUaBVN6ANoFkdAuiIbAVO9FnV9lChoBmgJaA9DCGcN3lfl0ihAlIaUUpRoFU0KAWgWR0C6Isabe/HpdX2UKGgGaAloD0MIWTFcHQCHYkCUhpRSlGgVTegDaBZHQLoixueSSvF1fZQoaAZoCWgPQwgYXHNH/zRwQJSGlFKUaBVNHAJoFkdAuik0yj59E3V9lChoBmgJaA9DCIy5awn5fHFAlIaUUpRoFU0HAmgWR0C6KXm87IT5dX2UKGgGaAloD0MIyGEwf8VLcECUhpRSlGgVTdwBaBZHQLopl961LJ11fZQoaAZoCWgPQwh8fa1LTZhwQJSGlFKUaBVN1gFoFkdAuimpoYekpXV9lChoBmgJaA9DCCeG5GRi02xAlIaUUpRoFU2sAmgWR0C6KnVBY3efdX2UKGgGaAloD0MIcM0d/e+AcUCUhpRSlGgVTW0BaBZHQLoqpg+Qlrx1fZQoaAZoCWgPQwh1WOGWTz1wQJSGlFKUaBVNqAFoFkdAuitdPva11HV9lChoBmgJaA9DCFq77UKzEnBAlIaUUpRoFU0lAWgWR0C6K2N1+y7gdX2UKGgGaAloD0MI4ICWrmC9a0CUhpRSlGgVTTABaBZHQLorbCAMDwJ1fZQoaAZoCWgPQwgvwD46daU2QJSGlFKUaBVL62gWR0C6K6eB6KLsdX2UKGgGaAloD0MIXwt6b4zibUCUhpRSlGgVTTABaBZHQLosHsXSBsh1fZQoaAZoCWgPQwhStkjaDUxwQJSGlFKUaBVNeQFoFkdAuixYCwKSgXV9lChoBmgJaA9DCPgW1o13KFRAlIaUUpRoFU3oA2gWR0C6LIYSpR4ydX2UKGgGaAloD0MIr0LKTypqcECUhpRSlGgVTWkBaBZHQLoss+FlCkZ1fZQoaAZoCWgPQwgBFY4glQluQJSGlFKUaBVNZwFoFkdAui03/EOy3XV9lChoBmgJaA9DCBr5vOIp9GxAlIaUUpRoFU2hAWgWR0C6LcC5I6KcdX2UKGgGaAloD0MIa9RDNLqPOMCUhpRSlGgVTQQBaBZHQLouHT6zmfZ1fZQoaAZoCWgPQwiHwfwVMiM4QJSGlFKUaBVNAAFoFkdAui4gLF4s3HV9lChoBmgJaA9DCKLvbmWJXm1AlIaUUpRoFU1eAWgWR0C6Ll6ZYxL1dX2UKGgGaAloD0MIq3r5nebTcECUhpRSlGgVTXkBaBZHQLoudmLLpzN1fZQoaAZoCWgPQwgW9x+ZDu9LQJSGlFKUaBVL8mgWR0C6Lrp1Ng0CdX2UKGgGaAloD0MIdTv7yoNHcECUhpRSlGgVTYwBaBZHQLovl20zCUJ1fZQoaAZoCWgPQwghW5avS1RwQJSGlFKUaBVNJAFoFkdAui+2d07r9nV9lChoBmgJaA9DCJ8B9WZUpm5AlIaUUpRoFU0pAWgWR0C6L/gNgBtDdX2UKGgGaAloD0MIXfqXpDIUZECUhpRSlGgVTegDaBZHQLowcirDIil1fZQoaAZoCWgPQwhCCMiX0EVuQJSGlFKUaBVNpQNoFkdAujB/yQPqcHV9lChoBmgJaA9DCH1e8dQjcm9AlIaUUpRoFU2BAWgWR0C6MJCSzPa+dX2UKGgGaAloD0MIXJIDdvU1cECUhpRSlGgVTUoBaBZHQLoxcqHoHLR1fZQoaAZoCWgPQwh16PS8G95uQJSGlFKUaBVNEwJoFkdAujF49xIatXV9lChoBmgJaA9DCIkmUMRiNnFAlIaUUpRoFU2wAWgWR0C6Mgejua4MdX2UKGgGaAloD0MI91eP+1ZLXECUhpRSlGgVTegDaBZHQLoyIC3gDRt1fZQoaAZoCWgPQwjXicvxip5qQJSGlFKUaBVNZAFoFkdAujJr3xnWa3V9lChoBmgJaA9DCADFyJI5yWpAlIaUUpRoFU2HAWgWR0C6MnSQo1DTdX2UKGgGaAloD0MILEXylcDha0CUhpRSlGgVTXMBaBZHQLoyfEpRXOp1fZQoaAZoCWgPQwhF9dbA1ixxQJSGlFKUaBVNUAFoFkdAujJ/abnX/nV9lChoBmgJaA9DCNTRcTVywnFAlIaUUpRoFU0kAWgWR0C6Msq99MK1dX2UKGgGaAloD0MIJT0MrU6WcECUhpRSlGgVTTIBaBZHQLozsJT2nKp1fZQoaAZoCWgPQwjJzAUuzyZwQJSGlFKUaBVNLwFoFkdAujPN90A93nVlLg=="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
agent47-aware/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8bb2373012117545bd3cfed175dd28255028760a215fea47773aa0532d12e27a
|
3 |
+
size 87929
|
agent47-aware/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9615fe34a5f3fba76d5dfec951b907bfd072c37f5d62e772e76fe590fed99838
|
3 |
+
size 43393
|
agent47-aware/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
agent47-aware/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f75ed877310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f75ed8773a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f75ed877430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f75ed8774c0>", "_build": "<function ActorCriticPolicy._build at 0x7f75ed877550>", "forward": "<function ActorCriticPolicy.forward at 0x7f75ed8775e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f75ed877670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f75ed877700>", "_predict": "<function ActorCriticPolicy._predict at 0x7f75ed877790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f75ed877820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f75ed8778b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f75ed877940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f75ed875ac0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679092296790909059, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrtGLy0Jp0/HnyCve5ovL62axM8aHgAPQAAAAAAAAAAeo5EvgVYeD4VDuk9fbBSvn2b0DwiYAK9AAAAAAAAAACTADQ+XMRrvKdCCLvjQxs5lP7OvaYuLjoAAIA/AACAP4D+Zj26lik+h+OKvmzO2b2aJxu9as/XvQAAAAAAAAAAM09APj8VAD+acgi+ZbtSvun7ATx7T7O8AAAAAAAAAABmxvW7VAOlP0dkjL0p8qW+d3kjOcoR1rwAAAAAAAAAAFMGPr5vwTY/gvQ6ve6Fdr68Ewm+/sflPAAAAAAAAAAA8xKgvZyOW7zK1uc62dprvB8lxD1iW0A9AACAPwAAgD8A0209w4FcurX7cziA+1QzxiouujGHj7cAAIA/AACAP9qv5r32rAi6RYlAOGQiBzMqA9s6m8BctwAAgD8AAAAARs8lvilVJby6dF2869yfukzZjz2WZIQ7AACAPwAAgD8OXpi+aDLlPkqhJz0jJX2+tfclvZMS270AAAAAAAAAAPOk0b2uB4u6EM8Cu85i4jjvrg47jq2DOQAAgD8AAIA/aoRhvh+oyzx0sB+6I3rBOAW0Xr6NRWQ5AACAPwAAgD/urKe+Sov0PtpbQT1SDoS+YHGvvRokEz0AAAAAAAAAAJC7uj7io6E+pp5yvg9VZr5bbtM8EmetvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIeLmI78QdbkCUhpRSlIwBbJRNHQOMAXSUR0C5+a9+w1R+dX2UKGgGaAloD0MI+KdUibLPNECUhpRSlGgVTREBaBZHQLn6chTOxB51fZQoaAZoCWgPQwgclgZ+VD5uQJSGlFKUaBVNsAJoFkdAuftddHDrJXV9lChoBmgJaA9DCDAvwD56FHBAlIaUUpRoFU1EAWgWR0C6AObfgrH3dX2UKGgGaAloD0MIhEcbR6zLXUCUhpRSlGgVTegDaBZHQLoBkQCCBf91fZQoaAZoCWgPQwgTZARUOCRkQJSGlFKUaBVN6ANoFkdAugG8TVUdaXV9lChoBmgJaA9DCF2j5UCPwW9AlIaUUpRoFU0tA2gWR0C6AgoldC3PdX2UKGgGaAloD0MIzZNrCmSycECUhpRSlGgVTQwCaBZHQLoCESHM2WJ1fZQoaAZoCWgPQwiuuaP/pSdyQJSGlFKUaBVNEgJoFkdAugLkCo0hvHV9lChoBmgJaA9DCOeqeY5IJ2NAlIaUUpRoFU3oA2gWR0C6AwWeg+QmdX2UKGgGaAloD0MIlbVN8ThjbECUhpRSlGgVTcIDaBZHQLoEx1L8Jld1fZQoaAZoCWgPQwiPp+UHrthvQJSGlFKUaBVNugFoFkdAugcZBOYYznV9lChoBmgJaA9DCLr1mh5UdnBAlIaUUpRoFU0VAmgWR0C6B0BYigTRdX2UKGgGaAloD0MI0csolhtocECUhpRSlGgVTV8CaBZHQLoII2USqVB1fZQoaAZoCWgPQwiemPViqMNvQJSGlFKUaBVNOgFoFkdAugg6FtbcGnV9lChoBmgJaA9DCJ3y6EbYMG9AlIaUUpRoFU3kAWgWR0C6CMITj/+9dX2UKGgGaAloD0MIKnPzjeiZcECUhpRSlGgVTa4CaBZHQLoJThY/3WZ1fZQoaAZoCWgPQwj4NCcvslhxQJSGlFKUaBVNrwFoFkdAuglS1y/9HnV9lChoBmgJaA9DCB4zUBl/EXBAlIaUUpRoFU3qAWgWR0C6CmvbGm1qdX2UKGgGaAloD0MIflLt03G3Y0CUhpRSlGgVTegDaBZHQLoKfm7aqS51fZQoaAZoCWgPQwikGYum8ydwQJSGlFKUaBVN7AJoFkdAugqrIaLn93V9lChoBmgJaA9DCDOpoQ1Ap3FAlIaUUpRoFU3oAWgWR0C6C4FU2kzodX2UKGgGaAloD0MIZqGd0ywbYkCUhpRSlGgVTegDaBZHQLoLmOt4iX91fZQoaAZoCWgPQwjpDmJnCl1vQJSGlFKUaBVNbQFoFkdAug3ndtVJc3V9lChoBmgJaA9DCH+mXreI1G9AlIaUUpRoFU25AWgWR0C6DlzzErGzdX2UKGgGaAloD0MIh8PSwI84cECUhpRSlGgVTX4BaBZHQLoOkeJHiFV1fZQoaAZoCWgPQwiQ3Jp028lvQJSGlFKUaBVNpAFoFkdAug6zz+WGAXV9lChoBmgJaA9DCLow0ova0llAlIaUUpRoFU3oA2gWR0C6D1piVjZtdX2UKGgGaAloD0MIKnEd44q4b0CUhpRSlGgVTbYBaBZHQLoP22a2F391fZQoaAZoCWgPQwgfnbryWYttQJSGlFKUaBVNhAFoFkdAuhAEakyk9HV9lChoBmgJaA9DCK5JtyXyjm1AlIaUUpRoFU1sAWgWR0C6FZ5cgQpXdX2UKGgGaAloD0MI+Z6RCA1CcECUhpRSlGgVTRACaBZHQLoWEbXpW3l1fZQoaAZoCWgPQwiHxahr7cRhQJSGlFKUaBVN6ANoFkdAuhYzfZVXFXV9lChoBmgJaA9DCAQEc/T4al9AlIaUUpRoFU3oA2gWR0C6FmVLeyiVdX2UKGgGaAloD0MIilqaWyGeb0CUhpRSlGgVTSsCaBZHQLoXyO4G2Th1fZQoaAZoCWgPQwgz4Zf6eT1uQJSGlFKUaBVNYgFoFkdAuhhy38XN1XV9lChoBmgJaA9DCJ1LcVVZsm1AlIaUUpRoFU1fAmgWR0C6GJHyRSxadX2UKGgGaAloD0MIixnh7cE9cECUhpRSlGgVTVgBaBZHQLoZLYu01Il1fZQoaAZoCWgPQwgNqaJ4lcRtQJSGlFKUaBVNTwNoFkdAuhm/yVfNRnV9lChoBmgJaA9DCFmmXyLeK2BAlIaUUpRoFU3oA2gWR0C6GiyM98qndX2UKGgGaAloD0MIHsTOFDrma0CUhpRSlGgVTbsBaBZHQLoanlrdnCh1fZQoaAZoCWgPQwjd7A+U224uQJSGlFKUaBVNFwFoFkdAuhq2F36hx3V9lChoBmgJaA9DCLuYZrrXzG5AlIaUUpRoFU2zAmgWR0C6GtgQtjCpdX2UKGgGaAloD0MIpS4Zx4hkcECUhpRSlGgVTaABaBZHQLoa1/7zkIZ1fZQoaAZoCWgPQwiB6bRuw/RxQJSGlFKUaBVN+QFoFkdAuhsKswL3K3V9lChoBmgJaA9DCABzLVqAanBAlIaUUpRoFU1KAWgWR0C6HBz7MxGldX2UKGgGaAloD0MI6N1YUJjFbkCUhpRSlGgVTbUBaBZHQLocYPWhAW11fZQoaAZoCWgPQwgXEFoP3xFvQJSGlFKUaBVN5wFoFkdAuhzJVaOghHV9lChoBmgJaA9DCABYHTlSjXBAlIaUUpRoFU1NAWgWR0C6HPaNp/PPdX2UKGgGaAloD0MIGsIxy543a0CUhpRSlGgVTTYBaBZHQLodXTxG2Cx1fZQoaAZoCWgPQwgl58QeGu5xQJSGlFKUaBVNoQFoFkdAuh1/8yeqaXV9lChoBmgJaA9DCLtGy4EeTm9AlIaUUpRoFU18AWgWR0C6HtokZ75VdX2UKGgGaAloD0MI0hvuI7dkcUCUhpRSlGgVTZ8BaBZHQLofUX/o7mx1fZQoaAZoCWgPQwjqJFtdTspwQJSGlFKUaBVN0gFoFkdAuh/L9fkWAXV9lChoBmgJaA9DCNAJoYOuK29AlIaUUpRoFU14AmgWR0C6IB53PiT/dX2UKGgGaAloD0MI1gCloUYrcUCUhpRSlGgVTTYCaBZHQLogOKqXF991fZQoaAZoCWgPQwjZJD/iV9huQJSGlFKUaBVNOAFoFkdAuiDPyNGViXV9lChoBmgJaA9DCJMa2gBsYG1AlIaUUpRoFU16AmgWR0C6IdzwUg0TdX2UKGgGaAloD0MIDqK1os0BZECUhpRSlGgVTegDaBZHQLoh9oHcDbJ1fZQoaAZoCWgPQwip3EQtza9lQJSGlFKUaBVN6ANoFkdAuiIbAVO9FnV9lChoBmgJaA9DCGcN3lfl0ihAlIaUUpRoFU0KAWgWR0C6Isabe/HpdX2UKGgGaAloD0MIWTFcHQCHYkCUhpRSlGgVTegDaBZHQLoixueSSvF1fZQoaAZoCWgPQwgYXHNH/zRwQJSGlFKUaBVNHAJoFkdAuik0yj59E3V9lChoBmgJaA9DCIy5awn5fHFAlIaUUpRoFU0HAmgWR0C6KXm87IT5dX2UKGgGaAloD0MIyGEwf8VLcECUhpRSlGgVTdwBaBZHQLopl961LJ11fZQoaAZoCWgPQwh8fa1LTZhwQJSGlFKUaBVN1gFoFkdAuimpoYekpXV9lChoBmgJaA9DCCeG5GRi02xAlIaUUpRoFU2sAmgWR0C6KnVBY3efdX2UKGgGaAloD0MIcM0d/e+AcUCUhpRSlGgVTW0BaBZHQLoqpg+Qlrx1fZQoaAZoCWgPQwh1WOGWTz1wQJSGlFKUaBVNqAFoFkdAuitdPva11HV9lChoBmgJaA9DCFq77UKzEnBAlIaUUpRoFU0lAWgWR0C6K2N1+y7gdX2UKGgGaAloD0MI4ICWrmC9a0CUhpRSlGgVTTABaBZHQLorbCAMDwJ1fZQoaAZoCWgPQwgvwD46daU2QJSGlFKUaBVL62gWR0C6K6eB6KLsdX2UKGgGaAloD0MIXwt6b4zibUCUhpRSlGgVTTABaBZHQLosHsXSBsh1fZQoaAZoCWgPQwhStkjaDUxwQJSGlFKUaBVNeQFoFkdAuixYCwKSgXV9lChoBmgJaA9DCPgW1o13KFRAlIaUUpRoFU3oA2gWR0C6LIYSpR4ydX2UKGgGaAloD0MIr0LKTypqcECUhpRSlGgVTWkBaBZHQLoss+FlCkZ1fZQoaAZoCWgPQwgBFY4glQluQJSGlFKUaBVNZwFoFkdAui03/EOy3XV9lChoBmgJaA9DCBr5vOIp9GxAlIaUUpRoFU2hAWgWR0C6LcC5I6KcdX2UKGgGaAloD0MIa9RDNLqPOMCUhpRSlGgVTQQBaBZHQLouHT6zmfZ1fZQoaAZoCWgPQwiHwfwVMiM4QJSGlFKUaBVNAAFoFkdAui4gLF4s3HV9lChoBmgJaA9DCKLvbmWJXm1AlIaUUpRoFU1eAWgWR0C6Ll6ZYxL1dX2UKGgGaAloD0MIq3r5nebTcECUhpRSlGgVTXkBaBZHQLoudmLLpzN1fZQoaAZoCWgPQwgW9x+ZDu9LQJSGlFKUaBVL8mgWR0C6Lrp1Ng0CdX2UKGgGaAloD0MIdTv7yoNHcECUhpRSlGgVTYwBaBZHQLovl20zCUJ1fZQoaAZoCWgPQwghW5avS1RwQJSGlFKUaBVNJAFoFkdAui+2d07r9nV9lChoBmgJaA9DCJ8B9WZUpm5AlIaUUpRoFU0pAWgWR0C6L/gNgBtDdX2UKGgGaAloD0MIXfqXpDIUZECUhpRSlGgVTegDaBZHQLowcirDIil1fZQoaAZoCWgPQwhCCMiX0EVuQJSGlFKUaBVNpQNoFkdAujB/yQPqcHV9lChoBmgJaA9DCH1e8dQjcm9AlIaUUpRoFU2BAWgWR0C6MJCSzPa+dX2UKGgGaAloD0MIXJIDdvU1cECUhpRSlGgVTUoBaBZHQLoxcqHoHLR1fZQoaAZoCWgPQwh16PS8G95uQJSGlFKUaBVNEwJoFkdAujF49xIatXV9lChoBmgJaA9DCIkmUMRiNnFAlIaUUpRoFU2wAWgWR0C6Mgejua4MdX2UKGgGaAloD0MI91eP+1ZLXECUhpRSlGgVTegDaBZHQLoyIC3gDRt1fZQoaAZoCWgPQwjXicvxip5qQJSGlFKUaBVNZAFoFkdAujJr3xnWa3V9lChoBmgJaA9DCADFyJI5yWpAlIaUUpRoFU2HAWgWR0C6MnSQo1DTdX2UKGgGaAloD0MILEXylcDha0CUhpRSlGgVTXMBaBZHQLoyfEpRXOp1fZQoaAZoCWgPQwhF9dbA1ixxQJSGlFKUaBVNUAFoFkdAujJ/abnX/nV9lChoBmgJaA9DCNTRcTVywnFAlIaUUpRoFU0kAWgWR0C6Msq99MK1dX2UKGgGaAloD0MIJT0MrU6WcECUhpRSlGgVTTIBaBZHQLozsJT2nKp1fZQoaAZoCWgPQwjJzAUuzyZwQJSGlFKUaBVNLwFoFkdAujPN90A93nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (214 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 206.9075518409248, "std_reward": 48.552329746396644, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-17T23:03:57.116855"}
|