PaulMest commited on
Commit
86b3424
1 Parent(s): 8709b0e

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 232.02 +/- 65.30
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0f6102fca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0f6102fd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0f6102fdc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0f6102fe50>", "_build": "<function ActorCriticPolicy._build at 0x7f0f6102fee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f0f6102ff70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0f61034040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0f610340d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0f61034160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0f610341f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0f61034280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0f6102c4b0>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672269741218556304, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAACYzrD7K+44+WNkEvirAe76EEFM91TafPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUwjkEseobECUhpRSlIwBbJRNUQGMAXSUR0ChPVjfvWpZdX2UKGgGaAloD0MIpwhwepcea0CUhpRSlGgVTUcBaBZHQKE+f2C/XXl1fZQoaAZoCWgPQwjDgvsBzxJxQJSGlFKUaBVNOwFoFkdAoT+QagmJFnV9lChoBmgJaA9DCHFa8KIvQXJAlIaUUpRoFU1sAWgWR0ChQVTEzfrKdX2UKGgGaAloD0MIqdpugm9mPECUhpRSlGgVS+1oFkdAoUIQFA3T/nV9lChoBmgJaA9DCMO68e7IOHBAlIaUUpRoFU1HAWgWR0ChQyEyULUkdX2UKGgGaAloD0MItoZSe9FdcUCUhpRSlGgVTToBaBZHQKFEFzEJjUd1fZQoaAZoCWgPQwhcVIuI4sVwQJSGlFKUaBVNJwFoFkdAoUWkJlar3nV9lChoBmgJaA9DCK2ImuhzKmtAlIaUUpRoFU1GAWgWR0ChRrvBJqZddX2UKGgGaAloD0MIuw9AapNicUCUhpRSlGgVTaABaBZHQKFIGOS4e911fZQoaAZoCWgPQwi0WIrkK01EQJSGlFKUaBVNEwFoFkdAoUmK2F36h3V9lChoBmgJaA9DCLcm3ZZI43BAlIaUUpRoFU0eAWgWR0ChSofoRqXXdX2UKGgGaAloD0MISRCugMK6bkCUhpRSlGgVTT8BaBZHQKFLhs3Q2Mt1fZQoaAZoCWgPQwhSCrq9pH9sQJSGlFKUaBVNOQFoFkdAoU0eEug6EXV9lChoBmgJaA9DCH0E/vDz/U1AlIaUUpRoFU0AAWgWR0ChTdp9JBgNdX2UKGgGaAloD0MI+dfyyjWOckCUhpRSlGgVTXYBaBZHQKFPA34Kx9p1fZQoaAZoCWgPQwgfEOhMWqhvQJSGlFKUaBVNSQFoFkdAoVCtbaAWi3V9lChoBmgJaA9DCE62gTuQhXBAlIaUUpRoFU1dAWgWR0ChUcj8UEgXdX2UKGgGaAloD0MI9dvXgfPacUCUhpRSlGgVTWUBaBZHQKFS4pw0fo11fZQoaAZoCWgPQwhCQpQvKJ9xQJSGlFKUaBVNNgFoFkdAoVR5ULlV+HV9lChoBmgJaA9DCFg33h0ZqXBAlIaUUpRoFU0vAWgWR0ChVXbxEv0zdX2UKGgGaAloD0MIEmvxKQB4b0CUhpRSlGgVTRYBaBZHQKFWUHmig011fZQoaAZoCWgPQwjMRuf8VJFxQJSGlFKUaBVNRAFoFkdAoVdI6nzg/HV9lChoBmgJaA9DCMI1d/S/725AlIaUUpRoFU0cAWgWR0ChWMEvTPSldX2UKGgGaAloD0MIzlSIR2KSbUCUhpRSlGgVTTgBaBZHQKFZ07tiQT51fZQoaAZoCWgPQwheS8gHPT9SQJSGlFKUaBVL+2gWR0ChWpciOeasdX2UKGgGaAloD0MIDwwgfKiEbkCUhpRSlGgVTS8BaBZHQKFcLX/YJ3R1fZQoaAZoCWgPQwhDqb2ItvJuQJSGlFKUaBVNFgFoFkdAoV0WgezUqnV9lChoBmgJaA9DCPFJJxJMZXBAlIaUUpRoFU04AWgWR0ChXgMz/IbPdX2UKGgGaAloD0MIMlpHVRO8X0CUhpRSlGgVTegDaBZHQKFiTLg4wRJ1fZQoaAZoCWgPQwgGnKVkOfZsQJSGlFKUaBVNNAFoFkdAoWNI2n8893V9lChoBmgJaA9DCH506srnPnBAlIaUUpRoFU03AWgWR0ChZO3JPqLTdX2UKGgGaAloD0MIm1lLAamIcUCUhpRSlGgVTWIBaBZHQKFl+ir1dxB1fZQoaAZoCWgPQwgKTRJLyi5wQJSGlFKUaBVNNQFoFkdAoWb7YGt6onV9lChoBmgJaA9DCNWWOsgrK3FAlIaUUpRoFU1PAWgWR0ChaLz/yXlbdX2UKGgGaAloD0MIDd5X5cKhcECUhpRSlGgVTSwBaBZHQKFpqT6i0v51fZQoaAZoCWgPQwifAIqRpQxtQJSGlFKUaBVNNwFoFkdAoWrBWBBiTnV9lChoBmgJaA9DCF1wBn+/V25AlIaUUpRoFU1QAWgWR0ChbF8a4tpVdX2UKGgGaAloD0MIRmEXRQ+YRkCUhpRSlGgVTQIBaBZHQKFtH4HHFP11fZQoaAZoCWgPQwgukKD4sWtwQJSGlFKUaBVNNAFoFkdAoW4f6XSjQHV9lChoBmgJaA9DCFOWIY51IW5AlIaUUpRoFU0gAWgWR0ChbwA75mAcdX2UKGgGaAloD0MIvLGgMOj8cUCUhpRSlGgVTZABaBZHQKFw/bZezD51fZQoaAZoCWgPQwgH7dXHQ4VuQJSGlFKUaBVNVQFoFkdAoXIwBkqc3HV9lChoBmgJaA9DCEG4Agr1znBAlIaUUpRoFU0gAWgWR0ChcxKJdjXndX2UKGgGaAloD0MIoKUr2Aa4cUCUhpRSlGgVTS0BaBZHQKF0pQu27Wd1fZQoaAZoCWgPQwgkSKXY0RgGwJSGlFKUaBVL8GgWR0ChdV770nPWdX2UKGgGaAloD0MIKuEJvf4QMUCUhpRSlGgVS9toFkdAoXYJsfq5b3V9lChoBmgJaA9DCJ5EhH8RQ25AlIaUUpRoFU0yAWgWR0ChdvhcRlH0dX2UKGgGaAloD0MIX9BCAgZ0cECUhpRSlGgVTTcBaBZHQKF4lapPykN1fZQoaAZoCWgPQwhX6e46G7RsQJSGlFKUaBVNIgFoFkdAoXmPTAnDznV9lChoBmgJaA9DCDjAzHewHHFAlIaUUpRoFU09AWgWR0Chep8HfMwDdX2UKGgGaAloD0MIHXbfMbyob0CUhpRSlGgVTU0BaBZHQKF8S4rjHXF1fZQoaAZoCWgPQwjC2hg7YehtQJSGlFKUaBVNQAFoFkdAoX1SpBHCoHV9lChoBmgJaA9DCPXabKzEaHBAlIaUUpRoFU1nAWgWR0Chfm717IDHdX2UKGgGaAloD0MIacai6exPb0CUhpRSlGgVTT0BaBZHQKGAEk43m3h1fZQoaAZoCWgPQwig/UgRGZFxQJSGlFKUaBVNOQFoFkdAoYENUKiPAHV9lChoBmgJaA9DCOsZwjHL6m5AlIaUUpRoFU0wAWgWR0ChggTdcjZ+dX2UKGgGaAloD0MI9fOmIhVCb0CUhpRSlGgVTSABaBZHQKGDknWJ79h1fZQoaAZoCWgPQwgD6WLTyiBvQJSGlFKUaBVNFQFoFkdAoYR5Qm/nGXV9lChoBmgJaA9DCI23lV4bh2tAlIaUUpRoFU0SAWgWR0ChhVOY6XBydX2UKGgGaAloD0MIpU+r6A/ta0CUhpRSlGgVTTUBaBZHQKGGWDPGACp1fZQoaAZoCWgPQwglQbgCCjlbQJSGlFKUaBVN6ANoFkdAoYscQEpy63V9lChoBmgJaA9DCLByaJHtB29AlIaUUpRoFU0kAWgWR0ChjLCL/CIldX2UKGgGaAloD0MIKv9aXnnrcECUhpRSlGgVTScBaBZHQKGNnxffGdZ1fZQoaAZoCWgPQwj/ImjMpMtiQJSGlFKUaBVN6ANoFkdAoZF0oQWepXV9lChoBmgJaA9DCOj2ksbo021AlIaUUpRoFU0kAWgWR0ChklkwFkhBdX2UKGgGaAloD0MIsHWpEfqtbUCUhpRSlGgVTVABaBZHQKGUHw/gR9R1fZQoaAZoCWgPQwjImpFBbohxQJSGlFKUaBVNVwFoFkdAoZVA33pOe3V9lChoBmgJaA9DCDQPYJFfwXBAlIaUUpRoFU0aAWgWR0ChliCtzS1FdX2UKGgGaAloD0MI3uNMEzbbbkCUhpRSlGgVTRUBaBZHQKGW+UornT11fZQoaAZoCWgPQwj3x3vVyvdvQJSGlFKUaBVNNQFoFkdAoZiBrzoUz3V9lChoBmgJaA9DCB2UMNP2fyFAlIaUUpRoFU0IAWgWR0ChmU9gWrOrdX2UKGgGaAloD0MIIH7+e/CGbkCUhpRSlGgVTSABaBZHQKGaOm3vx6R1fZQoaAZoCWgPQwg3/kRlA6NwQJSGlFKUaBVNJQFoFkdAoZvLNt65XnV9lChoBmgJaA9DCNCzWfW5TXFAlIaUUpRoFU1HAWgWR0ChnNUW2w3YdX2UKGgGaAloD0MIt5xLcRVycECUhpRSlGgVTUsBaBZHQKGd46unuRd1fZQoaAZoCWgPQwhda+9T1fphQJSGlFKUaBVN6ANoFkdAoaKRVGTcI3V9lChoBmgJaA9DCK/OMSB7f25AlIaUUpRoFU0hAWgWR0Cho3ZX+2mYdX2UKGgGaAloD0MI1GTG20pZcECUhpRSlGgVTUgBaBZHQKGlJYraufV1fZQoaAZoCWgPQwhe2nBY2qZxQJSGlFKUaBVN0AFoFkdAoaajCrLhaXV9lChoBmgJaA9DCC5yT1e3+3BAlIaUUpRoFU1HAWgWR0ChqGi/O+qSdX2UKGgGaAloD0MIUrZI2o10b0CUhpRSlGgVTWEBaBZHQKGpj+5vtMR1fZQoaAZoCWgPQwhJ1XYTfBdtQJSGlFKUaBVNnAFoFkdAoar+AAhjfHV9lChoBmgJaA9DCEcf8wEB/25AlIaUUpRoFU2SAWgWR0ChrRVdX1aodX2UKGgGaAloD0MIejarPtdEcUCUhpRSlGgVTUIBaBZHQKGuDgF5fMR1fZQoaAZoCWgPQwjggQGED5JtQJSGlFKUaBVNOwFoFkdAoa8CEYfnwHV9lChoBmgJaA9DCNyg9lu7MG9AlIaUUpRoFU1aAWgWR0ChsMETg2qDdX2UKGgGaAloD0MIBU62gfsVckCUhpRSlGgVTTEBaBZHQKGxpyJ9Aop1fZQoaAZoCWgPQwgNx/MZUEFuQJSGlFKUaBVNKgFoFkdAobKVYMfA9HV9lChoBmgJaA9DCNqR6jt/VXJAlIaUUpRoFU1HAWgWR0ChtEPo/zJ7dX2UKGgGaAloD0MIRgiPNo5Nb0CUhpRSlGgVTR8BaBZHQKG1PGI9C/p1fZQoaAZoCWgPQwhzK4TV2H1tQJSGlFKUaBVNIgFoFkdAobYoP3BYWHV9lChoBmgJaA9DCBDn4QSmV25AlIaUUpRoFU1nAWgWR0Cht09G7SRbdX2UKGgGaAloD0MIRKLQsm4FcECUhpRSlGgVTTUBaBZHQKG42m3OObR1fZQoaAZoCWgPQwiJDKt4o+dtQJSGlFKUaBVNhwFoFkdAobpK9Zid8XV9lChoBmgJaA9DCEchyaxe4mNAlIaUUpRoFU3oA2gWR0ChvlYe9zwMdX2UKGgGaAloD0MIAmTo2MHtbUCUhpRSlGgVTUUBaBZHQKG/WE9t/F11fZQoaAZoCWgPQwj8cma7QmdxQJSGlFKUaBVNPwFoFkdAocD5FG5MDnV9lChoBmgJaA9DCBsOSwO/g3FAlIaUUpRoFU0IAWgWR0ChwdFqrR0EdX2UKGgGaAloD0MIsOJUa+GQckCUhpRSlGgVTTUBaBZHQKHCy5Qxesx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2-paulmest.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff0b5b4d848f492baabc1383f20a74511d8dfec7fd2d14dcc0f6dac2cd15d740
3
+ size 146684
ppo-LunarLander-v2-paulmest/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2-paulmest/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0f6102fca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0f6102fd30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0f6102fdc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0f6102fe50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f0f6102fee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f0f6102ff70>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0f61034040>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f0f610340d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0f61034160>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0f610341f0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0f61034280>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f0f6102c4b0>"
20
+ },
21
+ "verbose": 0,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 1,
45
+ "num_timesteps": 1000448,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1672269741218556304,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAACYzrD7K+44+WNkEvirAe76EEFM91TafPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.00044800000000000395,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUwjkEseobECUhpRSlIwBbJRNUQGMAXSUR0ChPVjfvWpZdX2UKGgGaAloD0MIpwhwepcea0CUhpRSlGgVTUcBaBZHQKE+f2C/XXl1fZQoaAZoCWgPQwjDgvsBzxJxQJSGlFKUaBVNOwFoFkdAoT+QagmJFnV9lChoBmgJaA9DCHFa8KIvQXJAlIaUUpRoFU1sAWgWR0ChQVTEzfrKdX2UKGgGaAloD0MIqdpugm9mPECUhpRSlGgVS+1oFkdAoUIQFA3T/nV9lChoBmgJaA9DCMO68e7IOHBAlIaUUpRoFU1HAWgWR0ChQyEyULUkdX2UKGgGaAloD0MItoZSe9FdcUCUhpRSlGgVTToBaBZHQKFEFzEJjUd1fZQoaAZoCWgPQwhcVIuI4sVwQJSGlFKUaBVNJwFoFkdAoUWkJlar3nV9lChoBmgJaA9DCK2ImuhzKmtAlIaUUpRoFU1GAWgWR0ChRrvBJqZddX2UKGgGaAloD0MIuw9AapNicUCUhpRSlGgVTaABaBZHQKFIGOS4e911fZQoaAZoCWgPQwi0WIrkK01EQJSGlFKUaBVNEwFoFkdAoUmK2F36h3V9lChoBmgJaA9DCLcm3ZZI43BAlIaUUpRoFU0eAWgWR0ChSofoRqXXdX2UKGgGaAloD0MISRCugMK6bkCUhpRSlGgVTT8BaBZHQKFLhs3Q2Mt1fZQoaAZoCWgPQwhSCrq9pH9sQJSGlFKUaBVNOQFoFkdAoU0eEug6EXV9lChoBmgJaA9DCH0E/vDz/U1AlIaUUpRoFU0AAWgWR0ChTdp9JBgNdX2UKGgGaAloD0MI+dfyyjWOckCUhpRSlGgVTXYBaBZHQKFPA34Kx9p1fZQoaAZoCWgPQwgfEOhMWqhvQJSGlFKUaBVNSQFoFkdAoVCtbaAWi3V9lChoBmgJaA9DCE62gTuQhXBAlIaUUpRoFU1dAWgWR0ChUcj8UEgXdX2UKGgGaAloD0MI9dvXgfPacUCUhpRSlGgVTWUBaBZHQKFS4pw0fo11fZQoaAZoCWgPQwhCQpQvKJ9xQJSGlFKUaBVNNgFoFkdAoVR5ULlV+HV9lChoBmgJaA9DCFg33h0ZqXBAlIaUUpRoFU0vAWgWR0ChVXbxEv0zdX2UKGgGaAloD0MIEmvxKQB4b0CUhpRSlGgVTRYBaBZHQKFWUHmig011fZQoaAZoCWgPQwjMRuf8VJFxQJSGlFKUaBVNRAFoFkdAoVdI6nzg/HV9lChoBmgJaA9DCMI1d/S/725AlIaUUpRoFU0cAWgWR0ChWMEvTPSldX2UKGgGaAloD0MIzlSIR2KSbUCUhpRSlGgVTTgBaBZHQKFZ07tiQT51fZQoaAZoCWgPQwheS8gHPT9SQJSGlFKUaBVL+2gWR0ChWpciOeasdX2UKGgGaAloD0MIDwwgfKiEbkCUhpRSlGgVTS8BaBZHQKFcLX/YJ3R1fZQoaAZoCWgPQwhDqb2ItvJuQJSGlFKUaBVNFgFoFkdAoV0WgezUqnV9lChoBmgJaA9DCPFJJxJMZXBAlIaUUpRoFU04AWgWR0ChXgMz/IbPdX2UKGgGaAloD0MIMlpHVRO8X0CUhpRSlGgVTegDaBZHQKFiTLg4wRJ1fZQoaAZoCWgPQwgGnKVkOfZsQJSGlFKUaBVNNAFoFkdAoWNI2n8893V9lChoBmgJaA9DCH506srnPnBAlIaUUpRoFU03AWgWR0ChZO3JPqLTdX2UKGgGaAloD0MIm1lLAamIcUCUhpRSlGgVTWIBaBZHQKFl+ir1dxB1fZQoaAZoCWgPQwgKTRJLyi5wQJSGlFKUaBVNNQFoFkdAoWb7YGt6onV9lChoBmgJaA9DCNWWOsgrK3FAlIaUUpRoFU1PAWgWR0ChaLz/yXlbdX2UKGgGaAloD0MIDd5X5cKhcECUhpRSlGgVTSwBaBZHQKFpqT6i0v51fZQoaAZoCWgPQwifAIqRpQxtQJSGlFKUaBVNNwFoFkdAoWrBWBBiTnV9lChoBmgJaA9DCF1wBn+/V25AlIaUUpRoFU1QAWgWR0ChbF8a4tpVdX2UKGgGaAloD0MIRmEXRQ+YRkCUhpRSlGgVTQIBaBZHQKFtH4HHFP11fZQoaAZoCWgPQwgukKD4sWtwQJSGlFKUaBVNNAFoFkdAoW4f6XSjQHV9lChoBmgJaA9DCFOWIY51IW5AlIaUUpRoFU0gAWgWR0ChbwA75mAcdX2UKGgGaAloD0MIvLGgMOj8cUCUhpRSlGgVTZABaBZHQKFw/bZezD51fZQoaAZoCWgPQwgH7dXHQ4VuQJSGlFKUaBVNVQFoFkdAoXIwBkqc3HV9lChoBmgJaA9DCEG4Agr1znBAlIaUUpRoFU0gAWgWR0ChcxKJdjXndX2UKGgGaAloD0MIoKUr2Aa4cUCUhpRSlGgVTS0BaBZHQKF0pQu27Wd1fZQoaAZoCWgPQwgkSKXY0RgGwJSGlFKUaBVL8GgWR0ChdV770nPWdX2UKGgGaAloD0MIKuEJvf4QMUCUhpRSlGgVS9toFkdAoXYJsfq5b3V9lChoBmgJaA9DCJ5EhH8RQ25AlIaUUpRoFU0yAWgWR0ChdvhcRlH0dX2UKGgGaAloD0MIX9BCAgZ0cECUhpRSlGgVTTcBaBZHQKF4lapPykN1fZQoaAZoCWgPQwhX6e46G7RsQJSGlFKUaBVNIgFoFkdAoXmPTAnDznV9lChoBmgJaA9DCDjAzHewHHFAlIaUUpRoFU09AWgWR0Chep8HfMwDdX2UKGgGaAloD0MIHXbfMbyob0CUhpRSlGgVTU0BaBZHQKF8S4rjHXF1fZQoaAZoCWgPQwjC2hg7YehtQJSGlFKUaBVNQAFoFkdAoX1SpBHCoHV9lChoBmgJaA9DCPXabKzEaHBAlIaUUpRoFU1nAWgWR0Chfm717IDHdX2UKGgGaAloD0MIacai6exPb0CUhpRSlGgVTT0BaBZHQKGAEk43m3h1fZQoaAZoCWgPQwig/UgRGZFxQJSGlFKUaBVNOQFoFkdAoYENUKiPAHV9lChoBmgJaA9DCOsZwjHL6m5AlIaUUpRoFU0wAWgWR0ChggTdcjZ+dX2UKGgGaAloD0MI9fOmIhVCb0CUhpRSlGgVTSABaBZHQKGDknWJ79h1fZQoaAZoCWgPQwgD6WLTyiBvQJSGlFKUaBVNFQFoFkdAoYR5Qm/nGXV9lChoBmgJaA9DCI23lV4bh2tAlIaUUpRoFU0SAWgWR0ChhVOY6XBydX2UKGgGaAloD0MIpU+r6A/ta0CUhpRSlGgVTTUBaBZHQKGGWDPGACp1fZQoaAZoCWgPQwglQbgCCjlbQJSGlFKUaBVN6ANoFkdAoYscQEpy63V9lChoBmgJaA9DCLByaJHtB29AlIaUUpRoFU0kAWgWR0ChjLCL/CIldX2UKGgGaAloD0MIKv9aXnnrcECUhpRSlGgVTScBaBZHQKGNnxffGdZ1fZQoaAZoCWgPQwj/ImjMpMtiQJSGlFKUaBVN6ANoFkdAoZF0oQWepXV9lChoBmgJaA9DCOj2ksbo021AlIaUUpRoFU0kAWgWR0ChklkwFkhBdX2UKGgGaAloD0MIsHWpEfqtbUCUhpRSlGgVTVABaBZHQKGUHw/gR9R1fZQoaAZoCWgPQwjImpFBbohxQJSGlFKUaBVNVwFoFkdAoZVA33pOe3V9lChoBmgJaA9DCDQPYJFfwXBAlIaUUpRoFU0aAWgWR0ChliCtzS1FdX2UKGgGaAloD0MI3uNMEzbbbkCUhpRSlGgVTRUBaBZHQKGW+UornT11fZQoaAZoCWgPQwj3x3vVyvdvQJSGlFKUaBVNNQFoFkdAoZiBrzoUz3V9lChoBmgJaA9DCB2UMNP2fyFAlIaUUpRoFU0IAWgWR0ChmU9gWrOrdX2UKGgGaAloD0MIIH7+e/CGbkCUhpRSlGgVTSABaBZHQKGaOm3vx6R1fZQoaAZoCWgPQwg3/kRlA6NwQJSGlFKUaBVNJQFoFkdAoZvLNt65XnV9lChoBmgJaA9DCNCzWfW5TXFAlIaUUpRoFU1HAWgWR0ChnNUW2w3YdX2UKGgGaAloD0MIt5xLcRVycECUhpRSlGgVTUsBaBZHQKGd46unuRd1fZQoaAZoCWgPQwhda+9T1fphQJSGlFKUaBVN6ANoFkdAoaKRVGTcI3V9lChoBmgJaA9DCK/OMSB7f25AlIaUUpRoFU0hAWgWR0Cho3ZX+2mYdX2UKGgGaAloD0MI1GTG20pZcECUhpRSlGgVTUgBaBZHQKGlJYraufV1fZQoaAZoCWgPQwhe2nBY2qZxQJSGlFKUaBVN0AFoFkdAoaajCrLhaXV9lChoBmgJaA9DCC5yT1e3+3BAlIaUUpRoFU1HAWgWR0ChqGi/O+qSdX2UKGgGaAloD0MIUrZI2o10b0CUhpRSlGgVTWEBaBZHQKGpj+5vtMR1fZQoaAZoCWgPQwhJ1XYTfBdtQJSGlFKUaBVNnAFoFkdAoar+AAhjfHV9lChoBmgJaA9DCEcf8wEB/25AlIaUUpRoFU2SAWgWR0ChrRVdX1aodX2UKGgGaAloD0MIejarPtdEcUCUhpRSlGgVTUIBaBZHQKGuDgF5fMR1fZQoaAZoCWgPQwjggQGED5JtQJSGlFKUaBVNOwFoFkdAoa8CEYfnwHV9lChoBmgJaA9DCNyg9lu7MG9AlIaUUpRoFU1aAWgWR0ChsMETg2qDdX2UKGgGaAloD0MIBU62gfsVckCUhpRSlGgVTTEBaBZHQKGxpyJ9Aop1fZQoaAZoCWgPQwgNx/MZUEFuQJSGlFKUaBVNKgFoFkdAobKVYMfA9HV9lChoBmgJaA9DCNqR6jt/VXJAlIaUUpRoFU1HAWgWR0ChtEPo/zJ7dX2UKGgGaAloD0MIRgiPNo5Nb0CUhpRSlGgVTR8BaBZHQKG1PGI9C/p1fZQoaAZoCWgPQwhzK4TV2H1tQJSGlFKUaBVNIgFoFkdAobYoP3BYWHV9lChoBmgJaA9DCBDn4QSmV25AlIaUUpRoFU1nAWgWR0Cht09G7SRbdX2UKGgGaAloD0MIRKLQsm4FcECUhpRSlGgVTTUBaBZHQKG42m3OObR1fZQoaAZoCWgPQwiJDKt4o+dtQJSGlFKUaBVNhwFoFkdAobpK9Zid8XV9lChoBmgJaA9DCEchyaxe4mNAlIaUUpRoFU3oA2gWR0ChvlYe9zwMdX2UKGgGaAloD0MIAmTo2MHtbUCUhpRSlGgVTUUBaBZHQKG/WE9t/F11fZQoaAZoCWgPQwj8cma7QmdxQJSGlFKUaBVNPwFoFkdAocD5FG5MDnV9lChoBmgJaA9DCBsOSwO/g3FAlIaUUpRoFU0IAWgWR0ChwdFqrR0EdX2UKGgGaAloD0MIsOJUa+GQckCUhpRSlGgVTTUBaBZHQKHCy5Qxesx1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 3908,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2-paulmest/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:425e9c67cbe4f0818a7d58a93c648ba6fbd93475022b542c3086d881823c0694
3
+ size 88057
ppo-LunarLander-v2-paulmest/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a181b513487da5850c0e46e7aba3b2648a03d4a3822e1a3c5c0ae4cf44921b3
3
+ size 43201
ppo-LunarLander-v2-paulmest/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2-paulmest/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (241 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 232.01547238694693, "std_reward": 65.29974190658425, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-29T00:44:41.130242"}