Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2-paulmest.zip +3 -0
- ppo-LunarLander-v2-paulmest/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2-paulmest/data +94 -0
- ppo-LunarLander-v2-paulmest/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2-paulmest/policy.pth +3 -0
- ppo-LunarLander-v2-paulmest/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2-paulmest/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 232.02 +/- 65.30
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0f6102fca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0f6102fd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0f6102fdc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0f6102fe50>", "_build": "<function ActorCriticPolicy._build at 0x7f0f6102fee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f0f6102ff70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0f61034040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0f610340d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0f61034160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0f610341f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0f61034280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0f6102c4b0>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672269741218556304, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAACYzrD7K+44+WNkEvirAe76EEFM91TafPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUwjkEseobECUhpRSlIwBbJRNUQGMAXSUR0ChPVjfvWpZdX2UKGgGaAloD0MIpwhwepcea0CUhpRSlGgVTUcBaBZHQKE+f2C/XXl1fZQoaAZoCWgPQwjDgvsBzxJxQJSGlFKUaBVNOwFoFkdAoT+QagmJFnV9lChoBmgJaA9DCHFa8KIvQXJAlIaUUpRoFU1sAWgWR0ChQVTEzfrKdX2UKGgGaAloD0MIqdpugm9mPECUhpRSlGgVS+1oFkdAoUIQFA3T/nV9lChoBmgJaA9DCMO68e7IOHBAlIaUUpRoFU1HAWgWR0ChQyEyULUkdX2UKGgGaAloD0MItoZSe9FdcUCUhpRSlGgVTToBaBZHQKFEFzEJjUd1fZQoaAZoCWgPQwhcVIuI4sVwQJSGlFKUaBVNJwFoFkdAoUWkJlar3nV9lChoBmgJaA9DCK2ImuhzKmtAlIaUUpRoFU1GAWgWR0ChRrvBJqZddX2UKGgGaAloD0MIuw9AapNicUCUhpRSlGgVTaABaBZHQKFIGOS4e911fZQoaAZoCWgPQwi0WIrkK01EQJSGlFKUaBVNEwFoFkdAoUmK2F36h3V9lChoBmgJaA9DCLcm3ZZI43BAlIaUUpRoFU0eAWgWR0ChSofoRqXXdX2UKGgGaAloD0MISRCugMK6bkCUhpRSlGgVTT8BaBZHQKFLhs3Q2Mt1fZQoaAZoCWgPQwhSCrq9pH9sQJSGlFKUaBVNOQFoFkdAoU0eEug6EXV9lChoBmgJaA9DCH0E/vDz/U1AlIaUUpRoFU0AAWgWR0ChTdp9JBgNdX2UKGgGaAloD0MI+dfyyjWOckCUhpRSlGgVTXYBaBZHQKFPA34Kx9p1fZQoaAZoCWgPQwgfEOhMWqhvQJSGlFKUaBVNSQFoFkdAoVCtbaAWi3V9lChoBmgJaA9DCE62gTuQhXBAlIaUUpRoFU1dAWgWR0ChUcj8UEgXdX2UKGgGaAloD0MI9dvXgfPacUCUhpRSlGgVTWUBaBZHQKFS4pw0fo11fZQoaAZoCWgPQwhCQpQvKJ9xQJSGlFKUaBVNNgFoFkdAoVR5ULlV+HV9lChoBmgJaA9DCFg33h0ZqXBAlIaUUpRoFU0vAWgWR0ChVXbxEv0zdX2UKGgGaAloD0MIEmvxKQB4b0CUhpRSlGgVTRYBaBZHQKFWUHmig011fZQoaAZoCWgPQwjMRuf8VJFxQJSGlFKUaBVNRAFoFkdAoVdI6nzg/HV9lChoBmgJaA9DCMI1d/S/725AlIaUUpRoFU0cAWgWR0ChWMEvTPSldX2UKGgGaAloD0MIzlSIR2KSbUCUhpRSlGgVTTgBaBZHQKFZ07tiQT51fZQoaAZoCWgPQwheS8gHPT9SQJSGlFKUaBVL+2gWR0ChWpciOeasdX2UKGgGaAloD0MIDwwgfKiEbkCUhpRSlGgVTS8BaBZHQKFcLX/YJ3R1fZQoaAZoCWgPQwhDqb2ItvJuQJSGlFKUaBVNFgFoFkdAoV0WgezUqnV9lChoBmgJaA9DCPFJJxJMZXBAlIaUUpRoFU04AWgWR0ChXgMz/IbPdX2UKGgGaAloD0MIMlpHVRO8X0CUhpRSlGgVTegDaBZHQKFiTLg4wRJ1fZQoaAZoCWgPQwgGnKVkOfZsQJSGlFKUaBVNNAFoFkdAoWNI2n8893V9lChoBmgJaA9DCH506srnPnBAlIaUUpRoFU03AWgWR0ChZO3JPqLTdX2UKGgGaAloD0MIm1lLAamIcUCUhpRSlGgVTWIBaBZHQKFl+ir1dxB1fZQoaAZoCWgPQwgKTRJLyi5wQJSGlFKUaBVNNQFoFkdAoWb7YGt6onV9lChoBmgJaA9DCNWWOsgrK3FAlIaUUpRoFU1PAWgWR0ChaLz/yXlbdX2UKGgGaAloD0MIDd5X5cKhcECUhpRSlGgVTSwBaBZHQKFpqT6i0v51fZQoaAZoCWgPQwifAIqRpQxtQJSGlFKUaBVNNwFoFkdAoWrBWBBiTnV9lChoBmgJaA9DCF1wBn+/V25AlIaUUpRoFU1QAWgWR0ChbF8a4tpVdX2UKGgGaAloD0MIRmEXRQ+YRkCUhpRSlGgVTQIBaBZHQKFtH4HHFP11fZQoaAZoCWgPQwgukKD4sWtwQJSGlFKUaBVNNAFoFkdAoW4f6XSjQHV9lChoBmgJaA9DCFOWIY51IW5AlIaUUpRoFU0gAWgWR0ChbwA75mAcdX2UKGgGaAloD0MIvLGgMOj8cUCUhpRSlGgVTZABaBZHQKFw/bZezD51fZQoaAZoCWgPQwgH7dXHQ4VuQJSGlFKUaBVNVQFoFkdAoXIwBkqc3HV9lChoBmgJaA9DCEG4Agr1znBAlIaUUpRoFU0gAWgWR0ChcxKJdjXndX2UKGgGaAloD0MIoKUr2Aa4cUCUhpRSlGgVTS0BaBZHQKF0pQu27Wd1fZQoaAZoCWgPQwgkSKXY0RgGwJSGlFKUaBVL8GgWR0ChdV770nPWdX2UKGgGaAloD0MIKuEJvf4QMUCUhpRSlGgVS9toFkdAoXYJsfq5b3V9lChoBmgJaA9DCJ5EhH8RQ25AlIaUUpRoFU0yAWgWR0ChdvhcRlH0dX2UKGgGaAloD0MIX9BCAgZ0cECUhpRSlGgVTTcBaBZHQKF4lapPykN1fZQoaAZoCWgPQwhX6e46G7RsQJSGlFKUaBVNIgFoFkdAoXmPTAnDznV9lChoBmgJaA9DCDjAzHewHHFAlIaUUpRoFU09AWgWR0Chep8HfMwDdX2UKGgGaAloD0MIHXbfMbyob0CUhpRSlGgVTU0BaBZHQKF8S4rjHXF1fZQoaAZoCWgPQwjC2hg7YehtQJSGlFKUaBVNQAFoFkdAoX1SpBHCoHV9lChoBmgJaA9DCPXabKzEaHBAlIaUUpRoFU1nAWgWR0Chfm717IDHdX2UKGgGaAloD0MIacai6exPb0CUhpRSlGgVTT0BaBZHQKGAEk43m3h1fZQoaAZoCWgPQwig/UgRGZFxQJSGlFKUaBVNOQFoFkdAoYENUKiPAHV9lChoBmgJaA9DCOsZwjHL6m5AlIaUUpRoFU0wAWgWR0ChggTdcjZ+dX2UKGgGaAloD0MI9fOmIhVCb0CUhpRSlGgVTSABaBZHQKGDknWJ79h1fZQoaAZoCWgPQwgD6WLTyiBvQJSGlFKUaBVNFQFoFkdAoYR5Qm/nGXV9lChoBmgJaA9DCI23lV4bh2tAlIaUUpRoFU0SAWgWR0ChhVOY6XBydX2UKGgGaAloD0MIpU+r6A/ta0CUhpRSlGgVTTUBaBZHQKGGWDPGACp1fZQoaAZoCWgPQwglQbgCCjlbQJSGlFKUaBVN6ANoFkdAoYscQEpy63V9lChoBmgJaA9DCLByaJHtB29AlIaUUpRoFU0kAWgWR0ChjLCL/CIldX2UKGgGaAloD0MIKv9aXnnrcECUhpRSlGgVTScBaBZHQKGNnxffGdZ1fZQoaAZoCWgPQwj/ImjMpMtiQJSGlFKUaBVN6ANoFkdAoZF0oQWepXV9lChoBmgJaA9DCOj2ksbo021AlIaUUpRoFU0kAWgWR0ChklkwFkhBdX2UKGgGaAloD0MIsHWpEfqtbUCUhpRSlGgVTVABaBZHQKGUHw/gR9R1fZQoaAZoCWgPQwjImpFBbohxQJSGlFKUaBVNVwFoFkdAoZVA33pOe3V9lChoBmgJaA9DCDQPYJFfwXBAlIaUUpRoFU0aAWgWR0ChliCtzS1FdX2UKGgGaAloD0MI3uNMEzbbbkCUhpRSlGgVTRUBaBZHQKGW+UornT11fZQoaAZoCWgPQwj3x3vVyvdvQJSGlFKUaBVNNQFoFkdAoZiBrzoUz3V9lChoBmgJaA9DCB2UMNP2fyFAlIaUUpRoFU0IAWgWR0ChmU9gWrOrdX2UKGgGaAloD0MIIH7+e/CGbkCUhpRSlGgVTSABaBZHQKGaOm3vx6R1fZQoaAZoCWgPQwg3/kRlA6NwQJSGlFKUaBVNJQFoFkdAoZvLNt65XnV9lChoBmgJaA9DCNCzWfW5TXFAlIaUUpRoFU1HAWgWR0ChnNUW2w3YdX2UKGgGaAloD0MIt5xLcRVycECUhpRSlGgVTUsBaBZHQKGd46unuRd1fZQoaAZoCWgPQwhda+9T1fphQJSGlFKUaBVN6ANoFkdAoaKRVGTcI3V9lChoBmgJaA9DCK/OMSB7f25AlIaUUpRoFU0hAWgWR0Cho3ZX+2mYdX2UKGgGaAloD0MI1GTG20pZcECUhpRSlGgVTUgBaBZHQKGlJYraufV1fZQoaAZoCWgPQwhe2nBY2qZxQJSGlFKUaBVN0AFoFkdAoaajCrLhaXV9lChoBmgJaA9DCC5yT1e3+3BAlIaUUpRoFU1HAWgWR0ChqGi/O+qSdX2UKGgGaAloD0MIUrZI2o10b0CUhpRSlGgVTWEBaBZHQKGpj+5vtMR1fZQoaAZoCWgPQwhJ1XYTfBdtQJSGlFKUaBVNnAFoFkdAoar+AAhjfHV9lChoBmgJaA9DCEcf8wEB/25AlIaUUpRoFU2SAWgWR0ChrRVdX1aodX2UKGgGaAloD0MIejarPtdEcUCUhpRSlGgVTUIBaBZHQKGuDgF5fMR1fZQoaAZoCWgPQwjggQGED5JtQJSGlFKUaBVNOwFoFkdAoa8CEYfnwHV9lChoBmgJaA9DCNyg9lu7MG9AlIaUUpRoFU1aAWgWR0ChsMETg2qDdX2UKGgGaAloD0MIBU62gfsVckCUhpRSlGgVTTEBaBZHQKGxpyJ9Aop1fZQoaAZoCWgPQwgNx/MZUEFuQJSGlFKUaBVNKgFoFkdAobKVYMfA9HV9lChoBmgJaA9DCNqR6jt/VXJAlIaUUpRoFU1HAWgWR0ChtEPo/zJ7dX2UKGgGaAloD0MIRgiPNo5Nb0CUhpRSlGgVTR8BaBZHQKG1PGI9C/p1fZQoaAZoCWgPQwhzK4TV2H1tQJSGlFKUaBVNIgFoFkdAobYoP3BYWHV9lChoBmgJaA9DCBDn4QSmV25AlIaUUpRoFU1nAWgWR0Cht09G7SRbdX2UKGgGaAloD0MIRKLQsm4FcECUhpRSlGgVTTUBaBZHQKG42m3OObR1fZQoaAZoCWgPQwiJDKt4o+dtQJSGlFKUaBVNhwFoFkdAobpK9Zid8XV9lChoBmgJaA9DCEchyaxe4mNAlIaUUpRoFU3oA2gWR0ChvlYe9zwMdX2UKGgGaAloD0MIAmTo2MHtbUCUhpRSlGgVTUUBaBZHQKG/WE9t/F11fZQoaAZoCWgPQwj8cma7QmdxQJSGlFKUaBVNPwFoFkdAocD5FG5MDnV9lChoBmgJaA9DCBsOSwO/g3FAlIaUUpRoFU0IAWgWR0ChwdFqrR0EdX2UKGgGaAloD0MIsOJUa+GQckCUhpRSlGgVTTUBaBZHQKHCy5Qxesx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2-paulmest.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ff0b5b4d848f492baabc1383f20a74511d8dfec7fd2d14dcc0f6dac2cd15d740
|
3 |
+
size 146684
|
ppo-LunarLander-v2-paulmest/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2-paulmest/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f0f6102fca0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0f6102fd30>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0f6102fdc0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0f6102fe50>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f0f6102fee0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f0f6102ff70>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0f61034040>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f0f610340d0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0f61034160>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0f610341f0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0f61034280>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f0f6102c4b0>"
|
20 |
+
},
|
21 |
+
"verbose": 0,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 1,
|
45 |
+
"num_timesteps": 1000448,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1672269741218556304,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAACYzrD7K+44+WNkEvirAe76EEFM91TafPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.00044800000000000395,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUwjkEseobECUhpRSlIwBbJRNUQGMAXSUR0ChPVjfvWpZdX2UKGgGaAloD0MIpwhwepcea0CUhpRSlGgVTUcBaBZHQKE+f2C/XXl1fZQoaAZoCWgPQwjDgvsBzxJxQJSGlFKUaBVNOwFoFkdAoT+QagmJFnV9lChoBmgJaA9DCHFa8KIvQXJAlIaUUpRoFU1sAWgWR0ChQVTEzfrKdX2UKGgGaAloD0MIqdpugm9mPECUhpRSlGgVS+1oFkdAoUIQFA3T/nV9lChoBmgJaA9DCMO68e7IOHBAlIaUUpRoFU1HAWgWR0ChQyEyULUkdX2UKGgGaAloD0MItoZSe9FdcUCUhpRSlGgVTToBaBZHQKFEFzEJjUd1fZQoaAZoCWgPQwhcVIuI4sVwQJSGlFKUaBVNJwFoFkdAoUWkJlar3nV9lChoBmgJaA9DCK2ImuhzKmtAlIaUUpRoFU1GAWgWR0ChRrvBJqZddX2UKGgGaAloD0MIuw9AapNicUCUhpRSlGgVTaABaBZHQKFIGOS4e911fZQoaAZoCWgPQwi0WIrkK01EQJSGlFKUaBVNEwFoFkdAoUmK2F36h3V9lChoBmgJaA9DCLcm3ZZI43BAlIaUUpRoFU0eAWgWR0ChSofoRqXXdX2UKGgGaAloD0MISRCugMK6bkCUhpRSlGgVTT8BaBZHQKFLhs3Q2Mt1fZQoaAZoCWgPQwhSCrq9pH9sQJSGlFKUaBVNOQFoFkdAoU0eEug6EXV9lChoBmgJaA9DCH0E/vDz/U1AlIaUUpRoFU0AAWgWR0ChTdp9JBgNdX2UKGgGaAloD0MI+dfyyjWOckCUhpRSlGgVTXYBaBZHQKFPA34Kx9p1fZQoaAZoCWgPQwgfEOhMWqhvQJSGlFKUaBVNSQFoFkdAoVCtbaAWi3V9lChoBmgJaA9DCE62gTuQhXBAlIaUUpRoFU1dAWgWR0ChUcj8UEgXdX2UKGgGaAloD0MI9dvXgfPacUCUhpRSlGgVTWUBaBZHQKFS4pw0fo11fZQoaAZoCWgPQwhCQpQvKJ9xQJSGlFKUaBVNNgFoFkdAoVR5ULlV+HV9lChoBmgJaA9DCFg33h0ZqXBAlIaUUpRoFU0vAWgWR0ChVXbxEv0zdX2UKGgGaAloD0MIEmvxKQB4b0CUhpRSlGgVTRYBaBZHQKFWUHmig011fZQoaAZoCWgPQwjMRuf8VJFxQJSGlFKUaBVNRAFoFkdAoVdI6nzg/HV9lChoBmgJaA9DCMI1d/S/725AlIaUUpRoFU0cAWgWR0ChWMEvTPSldX2UKGgGaAloD0MIzlSIR2KSbUCUhpRSlGgVTTgBaBZHQKFZ07tiQT51fZQoaAZoCWgPQwheS8gHPT9SQJSGlFKUaBVL+2gWR0ChWpciOeasdX2UKGgGaAloD0MIDwwgfKiEbkCUhpRSlGgVTS8BaBZHQKFcLX/YJ3R1fZQoaAZoCWgPQwhDqb2ItvJuQJSGlFKUaBVNFgFoFkdAoV0WgezUqnV9lChoBmgJaA9DCPFJJxJMZXBAlIaUUpRoFU04AWgWR0ChXgMz/IbPdX2UKGgGaAloD0MIMlpHVRO8X0CUhpRSlGgVTegDaBZHQKFiTLg4wRJ1fZQoaAZoCWgPQwgGnKVkOfZsQJSGlFKUaBVNNAFoFkdAoWNI2n8893V9lChoBmgJaA9DCH506srnPnBAlIaUUpRoFU03AWgWR0ChZO3JPqLTdX2UKGgGaAloD0MIm1lLAamIcUCUhpRSlGgVTWIBaBZHQKFl+ir1dxB1fZQoaAZoCWgPQwgKTRJLyi5wQJSGlFKUaBVNNQFoFkdAoWb7YGt6onV9lChoBmgJaA9DCNWWOsgrK3FAlIaUUpRoFU1PAWgWR0ChaLz/yXlbdX2UKGgGaAloD0MIDd5X5cKhcECUhpRSlGgVTSwBaBZHQKFpqT6i0v51fZQoaAZoCWgPQwifAIqRpQxtQJSGlFKUaBVNNwFoFkdAoWrBWBBiTnV9lChoBmgJaA9DCF1wBn+/V25AlIaUUpRoFU1QAWgWR0ChbF8a4tpVdX2UKGgGaAloD0MIRmEXRQ+YRkCUhpRSlGgVTQIBaBZHQKFtH4HHFP11fZQoaAZoCWgPQwgukKD4sWtwQJSGlFKUaBVNNAFoFkdAoW4f6XSjQHV9lChoBmgJaA9DCFOWIY51IW5AlIaUUpRoFU0gAWgWR0ChbwA75mAcdX2UKGgGaAloD0MIvLGgMOj8cUCUhpRSlGgVTZABaBZHQKFw/bZezD51fZQoaAZoCWgPQwgH7dXHQ4VuQJSGlFKUaBVNVQFoFkdAoXIwBkqc3HV9lChoBmgJaA9DCEG4Agr1znBAlIaUUpRoFU0gAWgWR0ChcxKJdjXndX2UKGgGaAloD0MIoKUr2Aa4cUCUhpRSlGgVTS0BaBZHQKF0pQu27Wd1fZQoaAZoCWgPQwgkSKXY0RgGwJSGlFKUaBVL8GgWR0ChdV770nPWdX2UKGgGaAloD0MIKuEJvf4QMUCUhpRSlGgVS9toFkdAoXYJsfq5b3V9lChoBmgJaA9DCJ5EhH8RQ25AlIaUUpRoFU0yAWgWR0ChdvhcRlH0dX2UKGgGaAloD0MIX9BCAgZ0cECUhpRSlGgVTTcBaBZHQKF4lapPykN1fZQoaAZoCWgPQwhX6e46G7RsQJSGlFKUaBVNIgFoFkdAoXmPTAnDznV9lChoBmgJaA9DCDjAzHewHHFAlIaUUpRoFU09AWgWR0Chep8HfMwDdX2UKGgGaAloD0MIHXbfMbyob0CUhpRSlGgVTU0BaBZHQKF8S4rjHXF1fZQoaAZoCWgPQwjC2hg7YehtQJSGlFKUaBVNQAFoFkdAoX1SpBHCoHV9lChoBmgJaA9DCPXabKzEaHBAlIaUUpRoFU1nAWgWR0Chfm717IDHdX2UKGgGaAloD0MIacai6exPb0CUhpRSlGgVTT0BaBZHQKGAEk43m3h1fZQoaAZoCWgPQwig/UgRGZFxQJSGlFKUaBVNOQFoFkdAoYENUKiPAHV9lChoBmgJaA9DCOsZwjHL6m5AlIaUUpRoFU0wAWgWR0ChggTdcjZ+dX2UKGgGaAloD0MI9fOmIhVCb0CUhpRSlGgVTSABaBZHQKGDknWJ79h1fZQoaAZoCWgPQwgD6WLTyiBvQJSGlFKUaBVNFQFoFkdAoYR5Qm/nGXV9lChoBmgJaA9DCI23lV4bh2tAlIaUUpRoFU0SAWgWR0ChhVOY6XBydX2UKGgGaAloD0MIpU+r6A/ta0CUhpRSlGgVTTUBaBZHQKGGWDPGACp1fZQoaAZoCWgPQwglQbgCCjlbQJSGlFKUaBVN6ANoFkdAoYscQEpy63V9lChoBmgJaA9DCLByaJHtB29AlIaUUpRoFU0kAWgWR0ChjLCL/CIldX2UKGgGaAloD0MIKv9aXnnrcECUhpRSlGgVTScBaBZHQKGNnxffGdZ1fZQoaAZoCWgPQwj/ImjMpMtiQJSGlFKUaBVN6ANoFkdAoZF0oQWepXV9lChoBmgJaA9DCOj2ksbo021AlIaUUpRoFU0kAWgWR0ChklkwFkhBdX2UKGgGaAloD0MIsHWpEfqtbUCUhpRSlGgVTVABaBZHQKGUHw/gR9R1fZQoaAZoCWgPQwjImpFBbohxQJSGlFKUaBVNVwFoFkdAoZVA33pOe3V9lChoBmgJaA9DCDQPYJFfwXBAlIaUUpRoFU0aAWgWR0ChliCtzS1FdX2UKGgGaAloD0MI3uNMEzbbbkCUhpRSlGgVTRUBaBZHQKGW+UornT11fZQoaAZoCWgPQwj3x3vVyvdvQJSGlFKUaBVNNQFoFkdAoZiBrzoUz3V9lChoBmgJaA9DCB2UMNP2fyFAlIaUUpRoFU0IAWgWR0ChmU9gWrOrdX2UKGgGaAloD0MIIH7+e/CGbkCUhpRSlGgVTSABaBZHQKGaOm3vx6R1fZQoaAZoCWgPQwg3/kRlA6NwQJSGlFKUaBVNJQFoFkdAoZvLNt65XnV9lChoBmgJaA9DCNCzWfW5TXFAlIaUUpRoFU1HAWgWR0ChnNUW2w3YdX2UKGgGaAloD0MIt5xLcRVycECUhpRSlGgVTUsBaBZHQKGd46unuRd1fZQoaAZoCWgPQwhda+9T1fphQJSGlFKUaBVN6ANoFkdAoaKRVGTcI3V9lChoBmgJaA9DCK/OMSB7f25AlIaUUpRoFU0hAWgWR0Cho3ZX+2mYdX2UKGgGaAloD0MI1GTG20pZcECUhpRSlGgVTUgBaBZHQKGlJYraufV1fZQoaAZoCWgPQwhe2nBY2qZxQJSGlFKUaBVN0AFoFkdAoaajCrLhaXV9lChoBmgJaA9DCC5yT1e3+3BAlIaUUpRoFU1HAWgWR0ChqGi/O+qSdX2UKGgGaAloD0MIUrZI2o10b0CUhpRSlGgVTWEBaBZHQKGpj+5vtMR1fZQoaAZoCWgPQwhJ1XYTfBdtQJSGlFKUaBVNnAFoFkdAoar+AAhjfHV9lChoBmgJaA9DCEcf8wEB/25AlIaUUpRoFU2SAWgWR0ChrRVdX1aodX2UKGgGaAloD0MIejarPtdEcUCUhpRSlGgVTUIBaBZHQKGuDgF5fMR1fZQoaAZoCWgPQwjggQGED5JtQJSGlFKUaBVNOwFoFkdAoa8CEYfnwHV9lChoBmgJaA9DCNyg9lu7MG9AlIaUUpRoFU1aAWgWR0ChsMETg2qDdX2UKGgGaAloD0MIBU62gfsVckCUhpRSlGgVTTEBaBZHQKGxpyJ9Aop1fZQoaAZoCWgPQwgNx/MZUEFuQJSGlFKUaBVNKgFoFkdAobKVYMfA9HV9lChoBmgJaA9DCNqR6jt/VXJAlIaUUpRoFU1HAWgWR0ChtEPo/zJ7dX2UKGgGaAloD0MIRgiPNo5Nb0CUhpRSlGgVTR8BaBZHQKG1PGI9C/p1fZQoaAZoCWgPQwhzK4TV2H1tQJSGlFKUaBVNIgFoFkdAobYoP3BYWHV9lChoBmgJaA9DCBDn4QSmV25AlIaUUpRoFU1nAWgWR0Cht09G7SRbdX2UKGgGaAloD0MIRKLQsm4FcECUhpRSlGgVTTUBaBZHQKG42m3OObR1fZQoaAZoCWgPQwiJDKt4o+dtQJSGlFKUaBVNhwFoFkdAobpK9Zid8XV9lChoBmgJaA9DCEchyaxe4mNAlIaUUpRoFU3oA2gWR0ChvlYe9zwMdX2UKGgGaAloD0MIAmTo2MHtbUCUhpRSlGgVTUUBaBZHQKG/WE9t/F11fZQoaAZoCWgPQwj8cma7QmdxQJSGlFKUaBVNPwFoFkdAocD5FG5MDnV9lChoBmgJaA9DCBsOSwO/g3FAlIaUUpRoFU0IAWgWR0ChwdFqrR0EdX2UKGgGaAloD0MIsOJUa+GQckCUhpRSlGgVTTUBaBZHQKHCy5Qxesx1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 3908,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2-paulmest/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:425e9c67cbe4f0818a7d58a93c648ba6fbd93475022b542c3086d881823c0694
|
3 |
+
size 88057
|
ppo-LunarLander-v2-paulmest/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8a181b513487da5850c0e46e7aba3b2648a03d4a3822e1a3c5c0ae4cf44921b3
|
3 |
+
size 43201
|
ppo-LunarLander-v2-paulmest/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2-paulmest/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (241 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 232.01547238694693, "std_reward": 65.29974190658425, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-29T00:44:41.130242"}
|