Patil commited on
Commit
7699f50
·
1 Parent(s): 4aca30b

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -4.59 +/- 1.41
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82a5be62597a6c1f78a204231ce8575889a3de01b0b70810f16883ea07407bbf
3
+ size 108016
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fa9f4121670>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7fa9f411ff80>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1679111293394813911,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAv/zkPnQta7z+mhY/v/zkPnQta7z+mhY/v/zkPnQta7z+mhY/v/zkPnQta7z+mhY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA0/nWvvApq7+MmTq/UsMwv73DEb9jSdI+Q24yvpnN6z5aIMm/m5yzPsej2D/Tm2O/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC//OQ+dC1rvP6aFj8qrj48k+9yu5C7E7y//OQ+dC1rvP6aFj8qrj48k+9yu5C7E7y//OQ+dC1rvP6aFj8qrj48k+9yu5C7E7y//OQ+dC1rvP6aFj8qrj48k+9yu5C7E7yUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.4472408 -0.0143541 0.5883025]\n [ 0.4472408 -0.0143541 0.5883025]\n [ 0.4472408 -0.0143541 0.5883025]\n [ 0.4472408 -0.0143541 0.5883025]]",
60
+ "desired_goal": "[[-0.41987476 -1.3372173 -0.72890544]\n [-0.69048035 -0.569393 0.41071615]\n [-0.17424874 0.46055296 -1.5712998 ]\n [ 0.35080418 1.6924981 -0.88909644]]",
61
+ "observation": "[[ 0.4472408 -0.0143541 0.5883025 0.0116382 -0.00370691 -0.00901689]\n [ 0.4472408 -0.0143541 0.5883025 0.0116382 -0.00370691 -0.00901689]\n [ 0.4472408 -0.0143541 0.5883025 0.0116382 -0.00370691 -0.00901689]\n [ 0.4472408 -0.0143541 0.5883025 0.0116382 -0.00370691 -0.00901689]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAjplIvUH8t7wQHNg9RM4nvJfutb1d5aw8fnamPTMqC74eINM97aEgPKjudj3KRyw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.04897457 -0.02245915 0.10552227]\n [-0.01024205 -0.08883398 0.02110546]\n [ 0.08128069 -0.13590316 0.1030886 ]\n [ 0.00980423 0.06028619 0.1682426 ]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwHgGDf0zFcCUhpRSlIwBbJRLMowBdJRHQKU+nl0YCQt1fZQoaAZoCWgPQwgmp3aGqU0KwJSGlFKUaBVLMmgWR0ClPmQJ5VwQdX2UKGgGaAloD0MIVFVoIJb9FMCUhpRSlGgVSzJoFkdApT4ozN2TxHV9lChoBmgJaA9DCGNi83FtGBvAlIaUUpRoFUsyaBZHQKU97UcXFcZ1fZQoaAZoCWgPQwgUe2gfK1gkwJSGlFKUaBVLMmgWR0ClQI863iJgdX2UKGgGaAloD0MIcoi4OZU8FsCUhpRSlGgVSzJoFkdApUBUYwZflnV9lChoBmgJaA9DCPXWwFYJ1gnAlIaUUpRoFUsyaBZHQKVAGSM98qp1fZQoaAZoCWgPQwj1gHnIlH8gwJSGlFKUaBVLMmgWR0ClP97P6be/dX2UKGgGaAloD0MIYRxcOuacFMCUhpRSlGgVSzJoFkdApUGQ+yJKrnV9lChoBmgJaA9DCM+7saAweBLAlIaUUpRoFUsyaBZHQKVBVZKWcBl1fZQoaAZoCWgPQwiXrIpwkzEbwJSGlFKUaBVLMmgWR0ClQRm9QGfPdX2UKGgGaAloD0MIf1AXKZSlGcCUhpRSlGgVSzJoFkdApUDdsUIsy3V9lChoBmgJaA9DCDzcDg2LoRLAlIaUUpRoFUsyaBZHQKVCeGcnVoZ1fZQoaAZoCWgPQwgiqBq9GmAbwJSGlFKUaBVLMmgWR0ClQj0QTVUddX2UKGgGaAloD0MI7FBNSdYhDMCUhpRSlGgVSzJoFkdApUIBYPoV23V9lChoBmgJaA9DCJDZWfROtRnAlIaUUpRoFUsyaBZHQKVBxVPva111fZQoaAZoCWgPQwj3yOaqec4MwJSGlFKUaBVLMmgWR0ClQ5kiliz+dX2UKGgGaAloD0MINX7hlSRHIMCUhpRSlGgVSzJoFkdApUNeHck+o3V9lChoBmgJaA9DCAGiYMYUTBHAlIaUUpRoFUsyaBZHQKVDIlN1yNp1fZQoaAZoCWgPQwh/iXjr/IsbwJSGlFKUaBVLMmgWR0ClQuZQYUFjdX2UKGgGaAloD0MIfVhv1ApTEcCUhpRSlGgVSzJoFkdApUR6Ik7fYXV9lChoBmgJaA9DCOUJhJ1i9Q7AlIaUUpRoFUsyaBZHQKVEPq46Oo51fZQoaAZoCWgPQwgz38FPHMASwJSGlFKUaBVLMmgWR0ClRALCvX9SdX2UKGgGaAloD0MIdsQhG0jXEcCUhpRSlGgVSzJoFkdApUPGpCKJmHV9lChoBmgJaA9DCHldv2A3jA7AlIaUUpRoFUsyaBZHQKVFWWykbgl1fZQoaAZoCWgPQwhaZDvfT+0RwJSGlFKUaBVLMmgWR0ClRR31J17qdX2UKGgGaAloD0MIuW5Kea2EEcCUhpRSlGgVSzJoFkdApUTiKNyYHHV9lChoBmgJaA9DCBwj2SPUbA3AlIaUUpRoFUsyaBZHQKVEph73PAx1fZQoaAZoCWgPQwhRL/g0J08HwJSGlFKUaBVLMmgWR0ClRjRb8m8edX2UKGgGaAloD0MIxccnZOdNCcCUhpRSlGgVSzJoFkdApUX48Md92HV9lChoBmgJaA9DCFrY0w5/nRTAlIaUUpRoFUsyaBZHQKVFvU1hsqJ1fZQoaAZoCWgPQwg6lnfVA0YJwJSGlFKUaBVLMmgWR0ClRYEep4r0dX2UKGgGaAloD0MIc/c5Plr8F8CUhpRSlGgVSzJoFkdApUcfUYsND3V9lChoBmgJaA9DCNLkYgysoxPAlIaUUpRoFUsyaBZHQKVG49FnZkF1fZQoaAZoCWgPQwhaEMr7OBoSwJSGlFKUaBVLMmgWR0ClRqf1QIlddX2UKGgGaAloD0MIfjuJCP+yEcCUhpRSlGgVSzJoFkdApUZrxy4nW3V9lChoBmgJaA9DCLwi+N9K1hXAlIaUUpRoFUsyaBZHQKVIARradtl1fZQoaAZoCWgPQwguOllqvZ8MwJSGlFKUaBVLMmgWR0ClR8WgezUrdX2UKGgGaAloD0MI6gjgZvGSE8CUhpRSlGgVSzJoFkdApUeJy+6AfHV9lChoBmgJaA9DCI7NjlTfSRDAlIaUUpRoFUsyaBZHQKVHTZnL7oB1fZQoaAZoCWgPQwgXSbvRx7wTwJSGlFKUaBVLMmgWR0ClSNwOnVG1dX2UKGgGaAloD0MI7C5QUmCRHcCUhpRSlGgVSzJoFkdApUigp8WsR3V9lChoBmgJaA9DCIdu9gfK3RfAlIaUUpRoFUsyaBZHQKVIZNxEORV1fZQoaAZoCWgPQwgsms5OBm8jwJSGlFKUaBVLMmgWR0ClSCjJlrdndX2UKGgGaAloD0MIkdJsHodhCMCUhpRSlGgVSzJoFkdApUnJqASWaHV9lChoBmgJaA9DCNhl+E83MBPAlIaUUpRoFUsyaBZHQKVJji4J/od1fZQoaAZoCWgPQwgNiXssfWgRwJSGlFKUaBVLMmgWR0ClSVK/EfkndX2UKGgGaAloD0MIk6gXfJrzC8CUhpRSlGgVSzJoFkdApUkW7Bfrr3V9lChoBmgJaA9DCLQ+5Zgszg/AlIaUUpRoFUsyaBZHQKVKuuXeFcp1fZQoaAZoCWgPQwjPukbLgd4SwJSGlFKUaBVLMmgWR0ClSn/A9FF2dX2UKGgGaAloD0MI2El9WdpJDsCUhpRSlGgVSzJoFkdApUpD3Ehq03V9lChoBmgJaA9DCMeBV8ud2RDAlIaUUpRoFUsyaBZHQKVKB6ol2Nh1fZQoaAZoCWgPQwj7dac7TxwKwJSGlFKUaBVLMmgWR0ClS5U/OdGzdX2UKGgGaAloD0MIQrKACdx6B8CUhpRSlGgVSzJoFkdApUtaL/CIlHV9lChoBmgJaA9DCAe0dAXb6BrAlIaUUpRoFUsyaBZHQKVLHkRSP2h1fZQoaAZoCWgPQwhUVtP1RNcdwJSGlFKUaBVLMmgWR0ClSuIBJZntdX2UKGgGaAloD0MIDhXj/E34G8CUhpRSlGgVSzJoFkdApUx3hwVCX3V9lChoBmgJaA9DCEoNbQA2AA/AlIaUUpRoFUsyaBZHQKVMPBciW3V1fZQoaAZoCWgPQwgdqinJOnwPwJSGlFKUaBVLMmgWR0ClTAAm7aqTdX2UKGgGaAloD0MIIv32deBcDcCUhpRSlGgVSzJoFkdApUvEBCD28XV9lChoBmgJaA9DCMoZijvehAvAlIaUUpRoFUsyaBZHQKVNVmMfigl1fZQoaAZoCWgPQwgce/ZcpgYQwJSGlFKUaBVLMmgWR0ClTRrz5GjLdX2UKGgGaAloD0MIfnTqymf5BsCUhpRSlGgVSzJoFkdApUzfES/TLHV9lChoBmgJaA9DCATLETKQ1x3AlIaUUpRoFUsyaBZHQKVMoyRjjJd1fZQoaAZoCWgPQwiaeXJNgewKwJSGlFKUaBVLMmgWR0ClTi25Yoy9dX2UKGgGaAloD0MI7E0MycnkBcCUhpRSlGgVSzJoFkdApU3yRU3n6nV9lChoBmgJaA9DCEAVN24xTxDAlIaUUpRoFUsyaBZHQKVNtmPHT7V1fZQoaAZoCWgPQwhPIy2Vt6MJwJSGlFKUaBVLMmgWR0ClTXo0qH45dX2UKGgGaAloD0MIYeP6d31mEsCUhpRSlGgVSzJoFkdApU8W0w8GLXV9lChoBmgJaA9DCN46/3bZTwzAlIaUUpRoFUsyaBZHQKVO21jRUm51fZQoaAZoCWgPQwgiNlg4SbMLwJSGlFKUaBVLMmgWR0ClTp+CTUy6dX2UKGgGaAloD0MILQWk/Q8QDsCUhpRSlGgVSzJoFkdApU5jWkJrtXV9lChoBmgJaA9DCOaUgJiEOxXAlIaUUpRoFUsyaBZHQKVQAzWPLgZ1fZQoaAZoCWgPQwjDSgUVVQcjwJSGlFKUaBVLMmgWR0ClT8fub7TEdX2UKGgGaAloD0MIVRLZB1nW/7+UhpRSlGgVSzJoFkdApU+MDKYAsHV9lChoBmgJaA9DCO58PzVe2hbAlIaUUpRoFUsyaBZHQKVPT9x6v7p1fZQoaAZoCWgPQwhQNA9gkf8VwJSGlFKUaBVLMmgWR0ClUOrEUCaJdX2UKGgGaAloD0MIVyHlJ9XeEsCUhpRSlGgVSzJoFkdApVCvbItDlnV9lChoBmgJaA9DCBYW3A94QA3AlIaUUpRoFUsyaBZHQKVQc4tpVS51fZQoaAZoCWgPQwhIwOjy5qAjwJSGlFKUaBVLMmgWR0ClUDfD+BH1dX2UKGgGaAloD0MIxqUqbXFNFcCUhpRSlGgVSzJoFkdApVHM3VCoj3V9lChoBmgJaA9DCK3AkNWtDhHAlIaUUpRoFUsyaBZHQKVRkXGff411fZQoaAZoCWgPQwgEHa1qSecPwJSGlFKUaBVLMmgWR0ClUVWlEZzgdX2UKGgGaAloD0MIynA8nwGFE8CUhpRSlGgVSzJoFkdApVEZcophF3V9lChoBmgJaA9DCAd7E0NyMhbAlIaUUpRoFUsyaBZHQKVSqxW1c+t1fZQoaAZoCWgPQwgmxFxStS0UwJSGlFKUaBVLMmgWR0ClUm+wC8vmdX2UKGgGaAloD0MIlL4Qct4/E8CUhpRSlGgVSzJoFkdApVIz0z0pVnV9lChoBmgJaA9DCNsV+mAZqyPAlIaUUpRoFUsyaBZHQKVR95kbxVh1fZQoaAZoCWgPQwjnxYmvdlQKwJSGlFKUaBVLMmgWR0ClU6YGt6omdX2UKGgGaAloD0MIchb2tMMfEMCUhpRSlGgVSzJoFkdApVNqqXF98nV9lChoBmgJaA9DCI1EaAQb9wTAlIaUUpRoFUsyaBZHQKVTLsniNsF1fZQoaAZoCWgPQwiwHvet1qkXwJSGlFKUaBVLMmgWR0ClUvLVFx4qdX2UKGgGaAloD0MIOlyrPezFEcCUhpRSlGgVSzJoFkdApVSS2x6fJ3V9lChoBmgJaA9DCE/ltKfkfAvAlIaUUpRoFUsyaBZHQKVUV2Pkq+d1fZQoaAZoCWgPQwjekbHa/D8SwJSGlFKUaBVLMmgWR0ClVBuU+s5odX2UKGgGaAloD0MIAU2EDU8vDMCUhpRSlGgVSzJoFkdApVPfXoTwlXV9lChoBmgJaA9DCD//PXjt8g/AlIaUUpRoFUsyaBZHQKVVyE7GNrF1fZQoaAZoCWgPQwhLAtTUsjUPwJSGlFKUaBVLMmgWR0ClVY1jiGWVdX2UKGgGaAloD0MIUn3nFyV4EsCUhpRSlGgVSzJoFkdApVVSC8OCoXV9lChoBmgJaA9DCAiwyK8fYgvAlIaUUpRoFUsyaBZHQKVVFmPHT7V1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59e1518d23295743a747c44818651d19e95b9f87e16c7ebb21df036470100527
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9bdf83a90f0b72196b09dc3322ba53ad0656a5705c9a6374d5e06b50afc5434a
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fa9f4121670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fa9f411ff80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679111293394813911, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAv/zkPnQta7z+mhY/v/zkPnQta7z+mhY/v/zkPnQta7z+mhY/v/zkPnQta7z+mhY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA0/nWvvApq7+MmTq/UsMwv73DEb9jSdI+Q24yvpnN6z5aIMm/m5yzPsej2D/Tm2O/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC//OQ+dC1rvP6aFj8qrj48k+9yu5C7E7y//OQ+dC1rvP6aFj8qrj48k+9yu5C7E7y//OQ+dC1rvP6aFj8qrj48k+9yu5C7E7y//OQ+dC1rvP6aFj8qrj48k+9yu5C7E7yUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.4472408 -0.0143541 0.5883025]\n [ 0.4472408 -0.0143541 0.5883025]\n [ 0.4472408 -0.0143541 0.5883025]\n [ 0.4472408 -0.0143541 0.5883025]]", "desired_goal": "[[-0.41987476 -1.3372173 -0.72890544]\n [-0.69048035 -0.569393 0.41071615]\n [-0.17424874 0.46055296 -1.5712998 ]\n [ 0.35080418 1.6924981 -0.88909644]]", "observation": "[[ 0.4472408 -0.0143541 0.5883025 0.0116382 -0.00370691 -0.00901689]\n [ 0.4472408 -0.0143541 0.5883025 0.0116382 -0.00370691 -0.00901689]\n [ 0.4472408 -0.0143541 0.5883025 0.0116382 -0.00370691 -0.00901689]\n [ 0.4472408 -0.0143541 0.5883025 0.0116382 -0.00370691 -0.00901689]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAjplIvUH8t7wQHNg9RM4nvJfutb1d5aw8fnamPTMqC74eINM97aEgPKjudj3KRyw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.04897457 -0.02245915 0.10552227]\n [-0.01024205 -0.08883398 0.02110546]\n [ 0.08128069 -0.13590316 0.1030886 ]\n [ 0.00980423 0.06028619 0.1682426 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwHgGDf0zFcCUhpRSlIwBbJRLMowBdJRHQKU+nl0YCQt1fZQoaAZoCWgPQwgmp3aGqU0KwJSGlFKUaBVLMmgWR0ClPmQJ5VwQdX2UKGgGaAloD0MIVFVoIJb9FMCUhpRSlGgVSzJoFkdApT4ozN2TxHV9lChoBmgJaA9DCGNi83FtGBvAlIaUUpRoFUsyaBZHQKU97UcXFcZ1fZQoaAZoCWgPQwgUe2gfK1gkwJSGlFKUaBVLMmgWR0ClQI863iJgdX2UKGgGaAloD0MIcoi4OZU8FsCUhpRSlGgVSzJoFkdApUBUYwZflnV9lChoBmgJaA9DCPXWwFYJ1gnAlIaUUpRoFUsyaBZHQKVAGSM98qp1fZQoaAZoCWgPQwj1gHnIlH8gwJSGlFKUaBVLMmgWR0ClP97P6be/dX2UKGgGaAloD0MIYRxcOuacFMCUhpRSlGgVSzJoFkdApUGQ+yJKrnV9lChoBmgJaA9DCM+7saAweBLAlIaUUpRoFUsyaBZHQKVBVZKWcBl1fZQoaAZoCWgPQwiXrIpwkzEbwJSGlFKUaBVLMmgWR0ClQRm9QGfPdX2UKGgGaAloD0MIf1AXKZSlGcCUhpRSlGgVSzJoFkdApUDdsUIsy3V9lChoBmgJaA9DCDzcDg2LoRLAlIaUUpRoFUsyaBZHQKVCeGcnVoZ1fZQoaAZoCWgPQwgiqBq9GmAbwJSGlFKUaBVLMmgWR0ClQj0QTVUddX2UKGgGaAloD0MI7FBNSdYhDMCUhpRSlGgVSzJoFkdApUIBYPoV23V9lChoBmgJaA9DCJDZWfROtRnAlIaUUpRoFUsyaBZHQKVBxVPva111fZQoaAZoCWgPQwj3yOaqec4MwJSGlFKUaBVLMmgWR0ClQ5kiliz+dX2UKGgGaAloD0MINX7hlSRHIMCUhpRSlGgVSzJoFkdApUNeHck+o3V9lChoBmgJaA9DCAGiYMYUTBHAlIaUUpRoFUsyaBZHQKVDIlN1yNp1fZQoaAZoCWgPQwh/iXjr/IsbwJSGlFKUaBVLMmgWR0ClQuZQYUFjdX2UKGgGaAloD0MIfVhv1ApTEcCUhpRSlGgVSzJoFkdApUR6Ik7fYXV9lChoBmgJaA9DCOUJhJ1i9Q7AlIaUUpRoFUsyaBZHQKVEPq46Oo51fZQoaAZoCWgPQwgz38FPHMASwJSGlFKUaBVLMmgWR0ClRALCvX9SdX2UKGgGaAloD0MIdsQhG0jXEcCUhpRSlGgVSzJoFkdApUPGpCKJmHV9lChoBmgJaA9DCHldv2A3jA7AlIaUUpRoFUsyaBZHQKVFWWykbgl1fZQoaAZoCWgPQwhaZDvfT+0RwJSGlFKUaBVLMmgWR0ClRR31J17qdX2UKGgGaAloD0MIuW5Kea2EEcCUhpRSlGgVSzJoFkdApUTiKNyYHHV9lChoBmgJaA9DCBwj2SPUbA3AlIaUUpRoFUsyaBZHQKVEph73PAx1fZQoaAZoCWgPQwhRL/g0J08HwJSGlFKUaBVLMmgWR0ClRjRb8m8edX2UKGgGaAloD0MIxccnZOdNCcCUhpRSlGgVSzJoFkdApUX48Md92HV9lChoBmgJaA9DCFrY0w5/nRTAlIaUUpRoFUsyaBZHQKVFvU1hsqJ1fZQoaAZoCWgPQwg6lnfVA0YJwJSGlFKUaBVLMmgWR0ClRYEep4r0dX2UKGgGaAloD0MIc/c5Plr8F8CUhpRSlGgVSzJoFkdApUcfUYsND3V9lChoBmgJaA9DCNLkYgysoxPAlIaUUpRoFUsyaBZHQKVG49FnZkF1fZQoaAZoCWgPQwhaEMr7OBoSwJSGlFKUaBVLMmgWR0ClRqf1QIlddX2UKGgGaAloD0MIfjuJCP+yEcCUhpRSlGgVSzJoFkdApUZrxy4nW3V9lChoBmgJaA9DCLwi+N9K1hXAlIaUUpRoFUsyaBZHQKVIARradtl1fZQoaAZoCWgPQwguOllqvZ8MwJSGlFKUaBVLMmgWR0ClR8WgezUrdX2UKGgGaAloD0MI6gjgZvGSE8CUhpRSlGgVSzJoFkdApUeJy+6AfHV9lChoBmgJaA9DCI7NjlTfSRDAlIaUUpRoFUsyaBZHQKVHTZnL7oB1fZQoaAZoCWgPQwgXSbvRx7wTwJSGlFKUaBVLMmgWR0ClSNwOnVG1dX2UKGgGaAloD0MI7C5QUmCRHcCUhpRSlGgVSzJoFkdApUigp8WsR3V9lChoBmgJaA9DCIdu9gfK3RfAlIaUUpRoFUsyaBZHQKVIZNxEORV1fZQoaAZoCWgPQwgsms5OBm8jwJSGlFKUaBVLMmgWR0ClSCjJlrdndX2UKGgGaAloD0MIkdJsHodhCMCUhpRSlGgVSzJoFkdApUnJqASWaHV9lChoBmgJaA9DCNhl+E83MBPAlIaUUpRoFUsyaBZHQKVJji4J/od1fZQoaAZoCWgPQwgNiXssfWgRwJSGlFKUaBVLMmgWR0ClSVK/EfkndX2UKGgGaAloD0MIk6gXfJrzC8CUhpRSlGgVSzJoFkdApUkW7Bfrr3V9lChoBmgJaA9DCLQ+5Zgszg/AlIaUUpRoFUsyaBZHQKVKuuXeFcp1fZQoaAZoCWgPQwjPukbLgd4SwJSGlFKUaBVLMmgWR0ClSn/A9FF2dX2UKGgGaAloD0MI2El9WdpJDsCUhpRSlGgVSzJoFkdApUpD3Ehq03V9lChoBmgJaA9DCMeBV8ud2RDAlIaUUpRoFUsyaBZHQKVKB6ol2Nh1fZQoaAZoCWgPQwj7dac7TxwKwJSGlFKUaBVLMmgWR0ClS5U/OdGzdX2UKGgGaAloD0MIQrKACdx6B8CUhpRSlGgVSzJoFkdApUtaL/CIlHV9lChoBmgJaA9DCAe0dAXb6BrAlIaUUpRoFUsyaBZHQKVLHkRSP2h1fZQoaAZoCWgPQwhUVtP1RNcdwJSGlFKUaBVLMmgWR0ClSuIBJZntdX2UKGgGaAloD0MIDhXj/E34G8CUhpRSlGgVSzJoFkdApUx3hwVCX3V9lChoBmgJaA9DCEoNbQA2AA/AlIaUUpRoFUsyaBZHQKVMPBciW3V1fZQoaAZoCWgPQwgdqinJOnwPwJSGlFKUaBVLMmgWR0ClTAAm7aqTdX2UKGgGaAloD0MIIv32deBcDcCUhpRSlGgVSzJoFkdApUvEBCD28XV9lChoBmgJaA9DCMoZijvehAvAlIaUUpRoFUsyaBZHQKVNVmMfigl1fZQoaAZoCWgPQwgce/ZcpgYQwJSGlFKUaBVLMmgWR0ClTRrz5GjLdX2UKGgGaAloD0MIfnTqymf5BsCUhpRSlGgVSzJoFkdApUzfES/TLHV9lChoBmgJaA9DCATLETKQ1x3AlIaUUpRoFUsyaBZHQKVMoyRjjJd1fZQoaAZoCWgPQwiaeXJNgewKwJSGlFKUaBVLMmgWR0ClTi25Yoy9dX2UKGgGaAloD0MI7E0MycnkBcCUhpRSlGgVSzJoFkdApU3yRU3n6nV9lChoBmgJaA9DCEAVN24xTxDAlIaUUpRoFUsyaBZHQKVNtmPHT7V1fZQoaAZoCWgPQwhPIy2Vt6MJwJSGlFKUaBVLMmgWR0ClTXo0qH45dX2UKGgGaAloD0MIYeP6d31mEsCUhpRSlGgVSzJoFkdApU8W0w8GLXV9lChoBmgJaA9DCN46/3bZTwzAlIaUUpRoFUsyaBZHQKVO21jRUm51fZQoaAZoCWgPQwgiNlg4SbMLwJSGlFKUaBVLMmgWR0ClTp+CTUy6dX2UKGgGaAloD0MILQWk/Q8QDsCUhpRSlGgVSzJoFkdApU5jWkJrtXV9lChoBmgJaA9DCOaUgJiEOxXAlIaUUpRoFUsyaBZHQKVQAzWPLgZ1fZQoaAZoCWgPQwjDSgUVVQcjwJSGlFKUaBVLMmgWR0ClT8fub7TEdX2UKGgGaAloD0MIVRLZB1nW/7+UhpRSlGgVSzJoFkdApU+MDKYAsHV9lChoBmgJaA9DCO58PzVe2hbAlIaUUpRoFUsyaBZHQKVPT9x6v7p1fZQoaAZoCWgPQwhQNA9gkf8VwJSGlFKUaBVLMmgWR0ClUOrEUCaJdX2UKGgGaAloD0MIVyHlJ9XeEsCUhpRSlGgVSzJoFkdApVCvbItDlnV9lChoBmgJaA9DCBYW3A94QA3AlIaUUpRoFUsyaBZHQKVQc4tpVS51fZQoaAZoCWgPQwhIwOjy5qAjwJSGlFKUaBVLMmgWR0ClUDfD+BH1dX2UKGgGaAloD0MIxqUqbXFNFcCUhpRSlGgVSzJoFkdApVHM3VCoj3V9lChoBmgJaA9DCK3AkNWtDhHAlIaUUpRoFUsyaBZHQKVRkXGff411fZQoaAZoCWgPQwgEHa1qSecPwJSGlFKUaBVLMmgWR0ClUVWlEZzgdX2UKGgGaAloD0MIynA8nwGFE8CUhpRSlGgVSzJoFkdApVEZcophF3V9lChoBmgJaA9DCAd7E0NyMhbAlIaUUpRoFUsyaBZHQKVSqxW1c+t1fZQoaAZoCWgPQwgmxFxStS0UwJSGlFKUaBVLMmgWR0ClUm+wC8vmdX2UKGgGaAloD0MIlL4Qct4/E8CUhpRSlGgVSzJoFkdApVIz0z0pVnV9lChoBmgJaA9DCNsV+mAZqyPAlIaUUpRoFUsyaBZHQKVR95kbxVh1fZQoaAZoCWgPQwjnxYmvdlQKwJSGlFKUaBVLMmgWR0ClU6YGt6omdX2UKGgGaAloD0MIchb2tMMfEMCUhpRSlGgVSzJoFkdApVNqqXF98nV9lChoBmgJaA9DCI1EaAQb9wTAlIaUUpRoFUsyaBZHQKVTLsniNsF1fZQoaAZoCWgPQwiwHvet1qkXwJSGlFKUaBVLMmgWR0ClUvLVFx4qdX2UKGgGaAloD0MIOlyrPezFEcCUhpRSlGgVSzJoFkdApVSS2x6fJ3V9lChoBmgJaA9DCE/ltKfkfAvAlIaUUpRoFUsyaBZHQKVUV2Pkq+d1fZQoaAZoCWgPQwjekbHa/D8SwJSGlFKUaBVLMmgWR0ClVBuU+s5odX2UKGgGaAloD0MIAU2EDU8vDMCUhpRSlGgVSzJoFkdApVPfXoTwlXV9lChoBmgJaA9DCD//PXjt8g/AlIaUUpRoFUsyaBZHQKVVyE7GNrF1fZQoaAZoCWgPQwhLAtTUsjUPwJSGlFKUaBVLMmgWR0ClVY1jiGWVdX2UKGgGaAloD0MIUn3nFyV4EsCUhpRSlGgVSzJoFkdApVVSC8OCoXV9lChoBmgJaA9DCAiwyK8fYgvAlIaUUpRoFUsyaBZHQKVVFmPHT7V1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (853 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -4.593481249921024, "std_reward": 1.4105039809363116, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-18T04:33:50.478495"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cdb29e8e40197895c3bc7a5becefc5bb0af7a571990f1fd3c76de63e43e76e1a
3
+ size 3056