FREDML / backup /redundant_files /test_gdp_scale.py
Edwin Salguero
Enhanced FRED ML with improved Reports & Insights page, fixed alignment analysis, and comprehensive analytics improvements
2469150
#!/usr/bin/env python3
"""
Test script to verify GDP scale and fix the issue
"""
import os
import sys
import pandas as pd
from datetime import datetime
# Add src to path
sys.path.append(os.path.join(os.path.dirname(__file__), 'src'))
def test_gdp_scale():
"""Test GDP scale to ensure it matches FRED values"""
print("=== TESTING GDP SCALE ===")
# Get API key
api_key = os.getenv('FRED_API_KEY')
if not api_key:
print("❌ FRED_API_KEY not set")
return
try:
from src.core.enhanced_fred_client import EnhancedFREDClient
from src.analysis.mathematical_fixes import MathematicalFixes
# Initialize client and mathematical fixes
client = EnhancedFREDClient(api_key)
math_fixes = MathematicalFixes()
# Fetch raw GDP data
print("\n1. Fetching raw GDP data from FRED...")
raw_data = client.fetch_economic_data(['GDPC1'], '2024-01-01', '2025-12-31')
if raw_data.empty:
print("❌ No raw data available")
return
print(f"Raw GDP data shape: {raw_data.shape}")
print(f"Raw GDP values: {raw_data['GDPC1'].tail()}")
# Apply mathematical fixes
print("\n2. Applying mathematical fixes...")
fixed_data, fix_info = math_fixes.apply_comprehensive_fixes(
raw_data,
target_freq='Q',
growth_method='pct_change',
normalize_units=True,
preserve_absolute_values=True
)
print(f"Fixed data shape: {fixed_data.shape}")
print(f"Fixed GDP values: {fixed_data['GDPC1'].tail()}")
# Check if the values are in the correct range (should be ~23,500 billion)
latest_gdp = fixed_data['GDPC1'].iloc[-1]
print(f"\nLatest GDP value: {latest_gdp}")
if 20000 <= latest_gdp <= 25000:
print("βœ… GDP scale is correct (in billions)")
elif 20 <= latest_gdp <= 25:
print("❌ GDP scale is wrong - showing in trillions instead of billions")
print(" Expected: ~23,500 billion, Got: ~23.5 billion")
else:
print(f"❌ GDP scale is wrong - unexpected value: {latest_gdp}")
# Test the unit normalization specifically
print("\n3. Testing unit normalization...")
normalized_data = math_fixes.normalize_units(raw_data)
print(f"Normalized GDP values: {normalized_data['GDPC1'].tail()}")
# Check the unit factors
print(f"\n4. Current unit factors:")
for indicator, factor in math_fixes.unit_factors.items():
print(f" {indicator}: {factor}")
except Exception as e:
print(f"❌ Error: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
test_gdp_scale()