{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7df6bd92ab90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7df6bd92ac20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7df6bd92acb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7df6bd92ad40>", "_build": "<function ActorCriticPolicy._build at 0x7df6bd92add0>", "forward": "<function ActorCriticPolicy.forward at 0x7df6bd92ae60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7df6bd92aef0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7df6bd92af80>", "_predict": "<function ActorCriticPolicy._predict at 0x7df6bd92b010>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7df6bd92b0a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7df6bd92b130>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7df6bd92b1c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7df6be24a200>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1713020168283070516, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABCNz2uBZC6i4UVvOW2/7Uhtry6ljdrNQAAgD8AAIA/ANq2PkEeYT/+nIg+HCeivuflij5aTdm8AAAAAAAAAACNKOA9IvmOP26Y2T6Un82+vuGBPRtbKT4AAAAAAAAAABphBj2PZlK6qTQSN4YNSLYI1mS7umAXtgAAgD8AAIA/mt2tOzHQGD7zt/C9m6M2vj2Dar3mEPk7AAAAAAAAAAAaJXM99rx/umNpVrrLLqy1QBu1OT5NdzkAAIA/AACAP7P4ED2uLYa62IXruovg1rXtiiC5jj0JOgAAgD8AAIA/JmaRva0Hfj5qhCW+rM5AviqaYr0GFsE9AAAAAAAAAAAzw7Q64eCjuo4XxzcPQNkyCIhGunVy5bYAAIA/AACAPzOSGD1If5W6MDxmu+3ShjiVJOA5YHD5OQAAgD8AAIA/mkGzO67HgrhFwDU7cHCdNwib7ztGvR66AACAPwAAgD+z1gA9FKyLuknUqzs0TCU4eirDumprIbcAAIA/AACAPwDDsr2PznG6o/ETu9Ig1bcNqky7+ognOgAAgD8AAIA/zSKYvPaUWbqSDNG5/JuEtVaDRTu1zvA4AACAPwAAgD9mUMk9ONi3u3oIPDzm64M8U9oQvXi1YD0AAIA/AACAPwD6xTzh2sS4NvXOuMn0CLbbtsc78h6ENQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGL4/bblA/uMAWyUTegDjAF0lEdAkgnpuQ6p53V9lChoBkdAYbpsu3+db2gHTegDaAhHQJIMWCQLeAN1fZQoaAZHQGfGyL61stVoB03oA2gIR0CSEYkeZG8VdX2UKGgGR0Bh+cw35vcaaAdN6ANoCEdAkhPj94u9OHV9lChoBkdAZFPBnjABUGgHTegDaAhHQJIbmD7Ikqt1fZQoaAZHQGKPiqQzUI9oB03oA2gIR0CSHZ6zmfXgdX2UKGgGR0Bgs5m5DqnnaAdN6ANoCEdAkh2iXhOxjnV9lChoBkdAZiz3/xUedWgHTegDaAhHQJIhiKDTSb91fZQoaAZHQF9agB91EE1oB03oA2gIR0CSKP45cTrWdX2UKGgGR0BlyLk6tDD1aAdN6ANoCEdAkivny3CsO3V9lChoBkdAZPRaUzKs+2gHTegDaAhHQJJJmiJwbVB1fZQoaAZHQGDBJhF3IMloB03oA2gIR0CSVsV/c32mdX2UKGgGR0BjSfeJpFkQaAdN6ANoCEdAkldBfrrxAnV9lChoBkdAZAz4Irvsq2gHTegDaAhHQJJc1udf9gp1fZQoaAZHQGZZcYAKfFtoB03oA2gIR0CSXT4n4O+adX2UKGgGR0BoJ0kQf6oEaAdN6ANoCEdAkl3gLApKBnV9lChoBkdAZDVaCcwxnGgHTegDaAhHQJJf0/QjUut1fZQoaAZHQGgy6IWP91loB03oA2gIR0CSYybuMMqjdX2UKGgGR0BlNKzollbvaAdN6ANoCEdAkmbCI+GGmHV9lChoBkdAYXtoqTbFj2gHTegDaAhHQJJoQo7V8Tl1fZQoaAZHQE1wDVYp2EFoB0vbaAhHQJJs38EV32V1fZQoaAZHQGDPyH2ys0ZoB03oA2gIR0CSbjTefqX4dX2UKGgGR0BhbKSRr8BNaAdN6ANoCEdAknFBrnDBM3V9lChoBkdAZ9JWU8mrsGgHTegDaAhHQJJxRv3rUsp1fZQoaAZHQGNSMuWa+exoB03oA2gIR0CSdil05lvqdX2UKGgGR0BnJE/Y8Md+aAdN6ANoCEdAkn13QdCE6HV9lChoBkdAYsG4Ajps42gHTegDaAhHQJKAJzySV4Z1fZQoaAZHQEvDa5f+judoB0v/aAhHQJKBsiILw4N1fZQoaAZHQGFFMfRu0kZoB03oA2gIR0CSmqarmyPddX2UKGgGR0BAJiiAUcn3aAdL1mgIR0CSnG4jrzGxdX2UKGgGR0Byix87ZFodaAdN1gFoCEdAkp393KSxJXV9lChoBkdAZfNqoIfKZGgHTegDaAhHQJKl1f8dgfF1fZQoaAZHQGQO1Z1V5rxoB03oA2gIR0CSph9kz41xdX2UKGgGR0BwR5pmEoOQaAdNjwNoCEdAkqk2606YFHV9lChoBkdAYYtKzRhMJ2gHTegDaAhHQJKrleLNwBJ1fZQoaAZHQGV7MXrMTvloB03oA2gIR0CSrAZGrjo7dX2UKGgGR0Bo4TRx95QhaAdN6ANoCEdAkqyWpqASWnV9lChoBkdAcCXeNkvsaGgHTXUBaAhHQJKxg0IkZ751fZQoaAZHQGU5Tch1TzdoB03oA2gIR0CStFDhtLtedX2UKGgGR0BheBxm03OwaAdN6ANoCEdAkrYi1JDmbXV9lChoBkdAR9O0zCUHIWgHS9VoCEdAkrZUxubZvnV9lChoBkdAXgkUEgW8AmgHTegDaAhHQJK7mNJe3QV1fZQoaAZHQHGpg3Lmp2loB00XAmgIR0CSvS5q/M4cdX2UKGgGR0Bile7aqS5iaAdN6ANoCEdAkr7GZiNKiHV9lChoBkdAS0PSUkfLcWgHS9FoCEdAksFccZLqU3V9lChoBkdAZlwOuq3mWGgHTegDaAhHQJLCdcTrVvx1fZQoaAZHQGM0xoZhrnFoB03oA2gIR0CSy62qT8pDdX2UKGgGR0BmyPdCVrylaAdN6ANoCEdAksxRTS9dvHV9lChoBkdAYmuDDCP6sWgHTegDaAhHQJLpKMQ2/BZ1fZQoaAZHQGNJkWZZ0S1oB03oA2gIR0CS8DNy5qdpdX2UKGgGR0BizXAIppevaAdN6ANoCEdAkvBqcNH6M3V9lChoBkdAYttqXWvr4WgHTegDaAhHQJLyQuCf6Gh1fZQoaAZHQGOBJFTefqZoB03oA2gIR0CS9GQa72+PdX2UKGgGR0BgqOJrLyMDaAdN6ANoCEdAkvVgbhm5D3V9lChoBkdAYsmnVoYek2gHTegDaAhHQJL6Pv1DjR51fZQoaAZHQGbFelKsdT5oB03oA2gIR0CS/XDmKZUldX2UKGgGR0BmvznPmganaAdN6ANoCEdAkv+vDcdo4HV9lChoBkdAY8yxRl6JImgHTegDaAhHQJMHZk1/DtR1fZQoaAZHQGIA0+1SflJoB03oA2gIR0CTCaL0jC53dX2UKGgGR0Bm9mqLjxTbaAdN6ANoCEdAkwtkdBBzFXV9lChoBkdAaJOTMaCL/GgHTegDaAhHQJMOH7MxGlR1fZQoaAZHQGi2hjvuw5hoB03oA2gIR0CTD1CIk7fYdX2UKGgGR0BQPMnZ00WNaAdL62gIR0CTFVo11nuidX2UKGgGR0BmDF9+gDigaAdN6ANoCEdAkxjQjps41nV9lChoBkdAY6miSq2jPGgHTegDaAhHQJMZZ6AvtdB1fZQoaAZHQHEM3yNGViZoB00NAmgIR0CTIPf16E8JdX2UKGgGR0BjYuWldkauaAdN6ANoCEdAkzXMNYr8SHV9lChoBkdAZOInGbTc7GgHTegDaAhHQJM+t6+nIhh1fZQoaAZHQGgIOiN83MpoB03oA2gIR0CTPvNUfgaWdX2UKGgGR0BgoT8+A3DOaAdN6ANoCEdAk0D42S+xnnV9lChoBkdAYjwAvL5h0GgHTegDaAhHQJNDRHCoCMh1fZQoaAZHQGVUI1+AmRhoB03oA2gIR0CTRFLF4s3AdX2UKGgGR0BmXyzeGfwraAdN6ANoCEdAk0mp9Vmz0HV9lChoBkdAYqs801qFiGgHTegDaAhHQJNMtybQTmJ1fZQoaAZHQGIiBNmDlHVoB03oA2gIR0CTVwrZJ04jdX2UKGgGR0BjbkjgQ6IWaAdN6ANoCEdAk1kEu6ErXnV9lChoBkdAZNXKZDzAe2gHTegDaAhHQJNcNLxqfvp1fZQoaAZHQGQHAOJ+DvpoB03oA2gIR0CTXYvQnhKldX2UKGgGR0BkhTYRNATqaAdN6ANoCEdAk2TF1fVqe3V9lChoBkdAZkbuZTho/WgHTegDaAhHQJNq4MspXp51fZQoaAZHQGK3QMH8jzJoB03oA2gIR0CTa+eXiR4hdX2UKGgGR0Biwf2saKk3aAdN6ANoCEdAk3MzZ6D5CXV9lChoBkdAZL+dn003wWgHTegDaAhHQJN2Okl/pdN1fZQoaAZHQGAk+DvmYBxoB03oA2gIR0CTmTYSg5BDdX2UKGgGR0BjQlVPva11aAdN6ANoCEdAk5mNeD3/P3V9lChoBkdAZBrUQTVUdmgHTegDaAhHQJOctQUHpr11fZQoaAZHQGQUvhIe5nVoB03oA2gIR0CTn0EOy3TedX2UKGgGR0BnSCm/FirlaAdN6ANoCEdAk6BxesxO+XV9lChoBkdAXLHTlT3qRmgHTegDaAhHQJOnruc+aBt1fZQoaAZHQGPT5dnkDIRoB03oA2gIR0CTq0m4RVZLdX2UKGgGR0BlATAWSEDhaAdN6ANoCEdAk7hHSv1UVHV9lChoBkdAZT3oX9BKMGgHTegDaAhHQJO6L+OwPiF1fZQoaAZHQGGo2QOnVG1oB03oA2gIR0CTvRsf7rLRdX2UKGgGR0BlrO+bmU4aaAdN6ANoCEdAk75W3OObRXV9lChoBkfAMjL0voNd7mgHS5loCEdAk8SKkuYhMnV9lChoBkdAXUmYlY2bX2gHTegDaAhHQJPGhD9fkWB1fZQoaAZHQGO2mAbyYoloB03oA2gIR0CTzY8b70nPdX2UKGgGR0Bl5MXgtOEeaAdN6ANoCEdAk86WsRxtHnV9lChoBkdAZ7o4RVZLZmgHTegDaAhHQJPVQx1xKg91fZQoaAZHQGTAkxIre69oB03oA2gIR0CT17aYu01JdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |