Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,57 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- fr
|
5 |
+
library_name: transformers
|
6 |
+
tags:
|
7 |
+
- linformer
|
8 |
+
- legal
|
9 |
+
- medical
|
10 |
+
- RoBERTa
|
11 |
+
- pytorch
|
12 |
+
---
|
13 |
+
|
14 |
+
# Jargon-general-base
|
15 |
+
|
16 |
+
[Jargon](https://hal.science/hal-04535557/file/FB2_domaines_specialises_LREC_COLING24.pdf) is an efficient transformer encoder LM for French, combining the LinFormer attention mechanism with the RoBERTa model architecture.
|
17 |
+
|
18 |
+
Jargon is available in several versions with different context sizes and types of pre-training corpora.
|
19 |
+
|
20 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
21 |
+
|
22 |
+
<!-- This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
|
23 |
+
-->
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
## Using Jargon models with HuggingFace transformers
|
28 |
+
|
29 |
+
You can get started with `jargon-general-base` using the code snippet below:
|
30 |
+
|
31 |
+
```python
|
32 |
+
from transformers import AutoModelForMaskedLM, AutoTokenizer, pipeline
|
33 |
+
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained("PantagrueLLM/jargon-general-base", trust_remote_code=True)
|
35 |
+
model = AutoModelForMaskedLM.from_pretrained("PantagrueLLM/jargon-general-base", trust_remote_code=True)
|
36 |
+
|
37 |
+
jargon_maskfiller = pipeline("fill-mask", model=model, tokenizer=tokenizer)
|
38 |
+
output = jargon_maskfiller("Il est allé au <mask> hier")
|
39 |
+
```
|
40 |
+
|
41 |
+
- **Funded by**
|
42 |
+
- GENCI-IDRIS (Grant 2022 A0131013801)
|
43 |
+
- French National Research Agency: Pantagruel grant ANR-23-IAS1-0001
|
44 |
+
- MIAI@Grenoble Alpes ANR-19-P3IA-0003
|
45 |
+
- PROPICTO ANR-20-CE93-0005
|
46 |
+
- Lawbot ANR-20-CE38-0013
|
47 |
+
- Swiss National Science Foundation (grant PROPICTO N°197864)
|
48 |
+
<!-- - **Shared by [optional]:** [More Information Needed] -->
|
49 |
+
<!-- - **Model type:** [More Information Needed] -->
|
50 |
+
- **Language(s):** French
|
51 |
+
- **License:** MIT
|
52 |
+
- **Developed by:** Vincent Segonne
|
53 |
+
<!-- - **Finetuned from model [optional]:** [More Information Needed] -->
|
54 |
+
<!--
|
55 |
+
### Model Sources [optional]
|
56 |
+
|
57 |
+
<!-- Provide the basic links for the model. -->
|