Pandita-IA's picture
ADD FILES
0628d16 verified
raw
history blame
18.7 kB
{
"name": "root",
"gauges": {
"Pyramids.Policy.Entropy.mean": {
"value": 0.3857576549053192,
"min": 0.3857576549053192,
"max": 1.4002728462219238,
"count": 33
},
"Pyramids.Policy.Entropy.sum": {
"value": 11690.0,
"min": 11557.279296875,
"max": 42478.67578125,
"count": 33
},
"Pyramids.Step.mean": {
"value": 989944.0,
"min": 29952.0,
"max": 989944.0,
"count": 33
},
"Pyramids.Step.sum": {
"value": 989944.0,
"min": 29952.0,
"max": 989944.0,
"count": 33
},
"Pyramids.Policy.ExtrinsicValueEstimate.mean": {
"value": 0.4349876046180725,
"min": -0.1013028621673584,
"max": 0.44215232133865356,
"count": 33
},
"Pyramids.Policy.ExtrinsicValueEstimate.sum": {
"value": 114.83673095703125,
"min": -24.413990020751953,
"max": 118.93897247314453,
"count": 33
},
"Pyramids.Policy.RndValueEstimate.mean": {
"value": 0.003222506260499358,
"min": -0.00939944852143526,
"max": 0.39375215768814087,
"count": 33
},
"Pyramids.Policy.RndValueEstimate.sum": {
"value": 0.8507416248321533,
"min": -2.453256130218506,
"max": 93.31925964355469,
"count": 33
},
"Pyramids.Losses.PolicyLoss.mean": {
"value": 0.06795283165272502,
"min": 0.06644769970452183,
"max": 0.07401672352955015,
"count": 33
},
"Pyramids.Losses.PolicyLoss.sum": {
"value": 0.9513396431381503,
"min": 0.49369668438943665,
"max": 1.075621556910668,
"count": 33
},
"Pyramids.Losses.ValueLoss.mean": {
"value": 0.013575619249119578,
"min": 0.0011979246234343056,
"max": 0.013807247448967485,
"count": 33
},
"Pyramids.Losses.ValueLoss.sum": {
"value": 0.19005866948767408,
"min": 0.013420961168740933,
"max": 0.20710871173451226,
"count": 33
},
"Pyramids.Policy.LearningRate.mean": {
"value": 7.5363760593357165e-06,
"min": 7.5363760593357165e-06,
"max": 0.00029515063018788575,
"count": 33
},
"Pyramids.Policy.LearningRate.sum": {
"value": 0.00010550926483070004,
"min": 0.00010550926483070004,
"max": 0.0035073611308797,
"count": 33
},
"Pyramids.Policy.Epsilon.mean": {
"value": 0.10251209285714287,
"min": 0.10251209285714287,
"max": 0.19838354285714285,
"count": 33
},
"Pyramids.Policy.Epsilon.sum": {
"value": 1.4351693,
"min": 1.3886848,
"max": 2.5691203000000002,
"count": 33
},
"Pyramids.Policy.Beta.mean": {
"value": 0.00026095807642857163,
"min": 0.00026095807642857163,
"max": 0.00983851593142857,
"count": 33
},
"Pyramids.Policy.Beta.sum": {
"value": 0.0036534130700000026,
"min": 0.0036534130700000026,
"max": 0.11693511796999999,
"count": 33
},
"Pyramids.Losses.RNDLoss.mean": {
"value": 0.007567566819489002,
"min": 0.007565208710730076,
"max": 0.5547627210617065,
"count": 33
},
"Pyramids.Losses.RNDLoss.sum": {
"value": 0.10594593733549118,
"min": 0.10591292381286621,
"max": 3.8833391666412354,
"count": 33
},
"Pyramids.Environment.EpisodeLength.mean": {
"value": 392.05479452054794,
"min": 381.2278481012658,
"max": 999.0,
"count": 33
},
"Pyramids.Environment.EpisodeLength.sum": {
"value": 28620.0,
"min": 15984.0,
"max": 33420.0,
"count": 33
},
"Pyramids.Environment.CumulativeReward.mean": {
"value": 1.416101348216403,
"min": -1.0000000521540642,
"max": 1.441506311391728,
"count": 33
},
"Pyramids.Environment.CumulativeReward.sum": {
"value": 103.37539841979742,
"min": -30.76340176910162,
"max": 113.8789985999465,
"count": 33
},
"Pyramids.Policy.ExtrinsicReward.mean": {
"value": 1.416101348216403,
"min": -1.0000000521540642,
"max": 1.441506311391728,
"count": 33
},
"Pyramids.Policy.ExtrinsicReward.sum": {
"value": 103.37539841979742,
"min": -30.76340176910162,
"max": 113.8789985999465,
"count": 33
},
"Pyramids.Policy.RndReward.mean": {
"value": 0.030801734485590117,
"min": 0.030801734485590117,
"max": 11.505982162430882,
"count": 33
},
"Pyramids.Policy.RndReward.sum": {
"value": 2.2485266174480785,
"min": 2.2485266174480785,
"max": 184.09571459889412,
"count": 33
},
"Pyramids.IsTraining.mean": {
"value": 1.0,
"min": 1.0,
"max": 1.0,
"count": 33
},
"Pyramids.IsTraining.sum": {
"value": 1.0,
"min": 1.0,
"max": 1.0,
"count": 33
}
},
"metadata": {
"timer_format_version": "0.1.0",
"start_time_seconds": "1719227379",
"python_version": "3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0]",
"command_line_arguments": "/usr/local/bin/mlagents-learn ./config/ppo/PyramidsRND.yaml --env=./training-envs-executables/linux/Pyramids/Pyramids --run-id=Pyramids Training --no-graphics",
"mlagents_version": "1.1.0.dev0",
"mlagents_envs_version": "1.1.0.dev0",
"communication_protocol_version": "1.5.0",
"pytorch_version": "2.3.0+cu121",
"numpy_version": "1.23.5",
"end_time_seconds": "1719229545"
},
"total": 2166.3301188490004,
"count": 1,
"self": 0.477593810000144,
"children": {
"run_training.setup": {
"total": 0.05040156799987017,
"count": 1,
"self": 0.05040156799987017
},
"TrainerController.start_learning": {
"total": 2165.8021234710004,
"count": 1,
"self": 1.3859239009839257,
"children": {
"TrainerController._reset_env": {
"total": 3.0494677980000233,
"count": 1,
"self": 3.0494677980000233
},
"TrainerController.advance": {
"total": 2161.2829154310166,
"count": 63614,
"self": 1.3968209089589436,
"children": {
"env_step": {
"total": 1526.207784086941,
"count": 63614,
"self": 1390.8850098949335,
"children": {
"SubprocessEnvManager._take_step": {
"total": 134.51494166698103,
"count": 63614,
"self": 4.632543766002755,
"children": {
"TorchPolicy.evaluate": {
"total": 129.88239790097828,
"count": 62550,
"self": 129.88239790097828
}
}
},
"workers": {
"total": 0.8078325250264697,
"count": 63614,
"self": 0.0,
"children": {
"worker_root": {
"total": 2160.685330722004,
"count": 63614,
"is_parallel": true,
"self": 891.5505974640191,
"children": {
"run_training.setup": {
"total": 0.0,
"count": 0,
"is_parallel": true,
"self": 0.0,
"children": {
"steps_from_proto": {
"total": 0.0020780120000836177,
"count": 1,
"is_parallel": true,
"self": 0.0006042730003628094,
"children": {
"_process_rank_one_or_two_observation": {
"total": 0.0014737389997208084,
"count": 8,
"is_parallel": true,
"self": 0.0014737389997208084
}
}
},
"UnityEnvironment.step": {
"total": 0.07416361200012034,
"count": 1,
"is_parallel": true,
"self": 0.0006517510000776383,
"children": {
"UnityEnvironment._generate_step_input": {
"total": 0.0004143260000546434,
"count": 1,
"is_parallel": true,
"self": 0.0004143260000546434
},
"communicator.exchange": {
"total": 0.059508003000019016,
"count": 1,
"is_parallel": true,
"self": 0.059508003000019016
},
"steps_from_proto": {
"total": 0.01358953199996904,
"count": 1,
"is_parallel": true,
"self": 0.00036488899991127255,
"children": {
"_process_rank_one_or_two_observation": {
"total": 0.013224643000057767,
"count": 8,
"is_parallel": true,
"self": 0.013224643000057767
}
}
}
}
}
}
},
"UnityEnvironment.step": {
"total": 1269.1347332579849,
"count": 63613,
"is_parallel": true,
"self": 33.74526759299397,
"children": {
"UnityEnvironment._generate_step_input": {
"total": 23.182139034026022,
"count": 63613,
"is_parallel": true,
"self": 23.182139034026022
},
"communicator.exchange": {
"total": 1115.742784193941,
"count": 63613,
"is_parallel": true,
"self": 1115.742784193941
},
"steps_from_proto": {
"total": 96.46454243702397,
"count": 63613,
"is_parallel": true,
"self": 19.336567039863212,
"children": {
"_process_rank_one_or_two_observation": {
"total": 77.12797539716075,
"count": 508904,
"is_parallel": true,
"self": 77.12797539716075
}
}
}
}
}
}
}
}
}
}
},
"trainer_advance": {
"total": 633.6783104351164,
"count": 63614,
"self": 2.6757331951214383,
"children": {
"process_trajectory": {
"total": 126.15475835499433,
"count": 63614,
"self": 125.89464509099412,
"children": {
"RLTrainer._checkpoint": {
"total": 0.2601132640002106,
"count": 2,
"self": 0.2601132640002106
}
}
},
"_update_policy": {
"total": 504.8478188850006,
"count": 449,
"self": 297.2448795539374,
"children": {
"TorchPPOOptimizer.update": {
"total": 207.60293933106323,
"count": 22815,
"self": 207.60293933106323
}
}
}
}
}
}
},
"trainer_threads": {
"total": 9.88000010693213e-07,
"count": 1,
"self": 9.88000010693213e-07
},
"TrainerController._save_models": {
"total": 0.08381535299986353,
"count": 1,
"self": 0.0012948500002494256,
"children": {
"RLTrainer._checkpoint": {
"total": 0.08252050299961411,
"count": 1,
"self": 0.08252050299961411
}
}
}
}
}
}
}