Training in progress, epoch 1
Browse files- README.md +64 -83
- model.safetensors +1 -1
- training_args.bin +1 -1
README.md
CHANGED
@@ -1,83 +1,64 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
###
|
39 |
-
|
40 |
-
|
41 |
-
-
|
42 |
-
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
-
|
48 |
-
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
-
|
65 |
-
- **Accuracy:** 94.2%
|
66 |
-
|
67 |
-
### Performance Metrics
|
68 |
-
- **Training Speed:** ~269 samples/second
|
69 |
-
- **Evaluation Speed:** ~1310 samples/second
|
70 |
-
|
71 |
-
## Usage Example
|
72 |
-
|
73 |
-
```python
|
74 |
-
from transformers import pipeline
|
75 |
-
|
76 |
-
# Load the fine-tuned model
|
77 |
-
classifier = pipeline("text-classification", model="Panda0116/emotion-classification-model")
|
78 |
-
|
79 |
-
# Example usage
|
80 |
-
text = "I am so happy to see you!"
|
81 |
-
emotion = classifier(text)
|
82 |
-
print(emotion)
|
83 |
-
```
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: distilbert-base-uncased
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: emotion-classification-model
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# emotion-classification-model
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.1606
|
22 |
+
- Accuracy: 0.942
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 5e-05
|
42 |
+
- train_batch_size: 16
|
43 |
+
- eval_batch_size: 16
|
44 |
+
- seed: 42
|
45 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- num_epochs: 3
|
48 |
+
- mixed_precision_training: Native AMP
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
53 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
54 |
+
| 0.2304 | 1.0 | 1000 | 0.2112 | 0.926 |
|
55 |
+
| 0.1308 | 2.0 | 2000 | 0.1700 | 0.936 |
|
56 |
+
| 0.0862 | 3.0 | 3000 | 0.1606 | 0.942 |
|
57 |
+
|
58 |
+
|
59 |
+
### Framework versions
|
60 |
+
|
61 |
+
- Transformers 4.46.2
|
62 |
+
- Pytorch 2.5.1+cu124
|
63 |
+
- Datasets 3.1.0
|
64 |
+
- Tokenizers 0.20.3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 267844872
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6dc3d0fd9d6da080ffc2cb5c41e5d022824bbc0bbc2ccad4a536a19878d6d72a
|
3 |
size 267844872
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 5304
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:226d3493aa66c23a935229c114d00ebdd82371e95a0ef074dc4b9de8fa794e5d
|
3 |
size 5304
|