update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-sa-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- te_dx_jp
|
7 |
+
model-index:
|
8 |
+
- name: t5-base-TEDxJP-4front-1body-4rear
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# t5-base-TEDxJP-4front-1body-4rear
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.4398
|
20 |
+
- Wer: 0.1697
|
21 |
+
- Mer: 0.1641
|
22 |
+
- Wil: 0.2506
|
23 |
+
- Wip: 0.7494
|
24 |
+
- Hits: 55824
|
25 |
+
- Substitutions: 6360
|
26 |
+
- Deletions: 2403
|
27 |
+
- Insertions: 2197
|
28 |
+
- Cer: 0.1335
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 0.0001
|
48 |
+
- train_batch_size: 32
|
49 |
+
- eval_batch_size: 32
|
50 |
+
- seed: 42
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- lr_scheduler_warmup_ratio: 0.1
|
54 |
+
- num_epochs: 10
|
55 |
+
|
56 |
+
### Training results
|
57 |
+
|
58 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer |
|
59 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:|
|
60 |
+
| 0.5976 | 1.0 | 1457 | 0.4725 | 0.2267 | 0.2107 | 0.2985 | 0.7015 | 54877 | 6654 | 3056 | 4935 | 0.2024 |
|
61 |
+
| 0.4849 | 2.0 | 2914 | 0.4229 | 0.1789 | 0.1726 | 0.2590 | 0.7410 | 55401 | 6358 | 2828 | 2371 | 0.1432 |
|
62 |
+
| 0.4632 | 3.0 | 4371 | 0.4167 | 0.1725 | 0.1667 | 0.2529 | 0.7471 | 55723 | 6347 | 2517 | 2280 | 0.1343 |
|
63 |
+
| 0.3981 | 4.0 | 5828 | 0.4146 | 0.1716 | 0.1658 | 0.2521 | 0.7479 | 55784 | 6355 | 2448 | 2282 | 0.1336 |
|
64 |
+
| 0.3551 | 5.0 | 7285 | 0.4189 | 0.1713 | 0.1652 | 0.2512 | 0.7488 | 55909 | 6340 | 2338 | 2388 | 0.1345 |
|
65 |
+
| 0.3253 | 6.0 | 8742 | 0.4238 | 0.1714 | 0.1656 | 0.2514 | 0.7486 | 55805 | 6315 | 2467 | 2291 | 0.1359 |
|
66 |
+
| 0.308 | 7.0 | 10199 | 0.4292 | 0.1703 | 0.1645 | 0.2506 | 0.7494 | 55862 | 6341 | 2384 | 2271 | 0.1353 |
|
67 |
+
| 0.324 | 8.0 | 11656 | 0.4304 | 0.1693 | 0.1637 | 0.2497 | 0.7503 | 55856 | 6324 | 2407 | 2205 | 0.1336 |
|
68 |
+
| 0.2861 | 9.0 | 13113 | 0.4356 | 0.1694 | 0.1639 | 0.2501 | 0.7499 | 55814 | 6336 | 2437 | 2166 | 0.1332 |
|
69 |
+
| 0.2788 | 10.0 | 14570 | 0.4398 | 0.1697 | 0.1641 | 0.2506 | 0.7494 | 55824 | 6360 | 2403 | 2197 | 0.1335 |
|
70 |
+
|
71 |
+
|
72 |
+
### Framework versions
|
73 |
+
|
74 |
+
- Transformers 4.21.2
|
75 |
+
- Pytorch 1.12.1+cu116
|
76 |
+
- Datasets 2.4.0
|
77 |
+
- Tokenizers 0.12.1
|