Update README.md
Browse files
README.md
CHANGED
|
@@ -1,79 +1,90 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: cc-by-nc-4.0
|
| 3 |
-
tags:
|
| 4 |
-
- vae
|
| 5 |
-
- image-generation
|
| 6 |
-
- diffusion
|
| 7 |
-
-
|
| 8 |
-
library_name: pytorch
|
| 9 |
-
pipeline_tag: image-to-image
|
| 10 |
-
---
|
| 11 |
-
|
| 12 |
-
#
|
| 13 |
-
|
| 14 |
-
Variational Autoencoder for
|
| 15 |
-
|
| 16 |
-
## Architecture
|
| 17 |
-
|
| 18 |
-
**89M parameters** | 256x256 images | 4-channel latent space
|
| 19 |
-
|
| 20 |
-
### Encoder
|
| 21 |
-
$$z = \mathcal{E}(x) \in \mathbb{R}^{32 \times 32 \times 4}$$
|
| 22 |
-
|
| 23 |
-
Compresses 256x256x3 images to 32x32x4 latents (8x spatial compression).
|
| 24 |
-
|
| 25 |
-
### Decoder
|
| 26 |
-
$$\hat{x} = \mathcal{D}(z) \in \mathbb{R}^{256 \times 256 \times 3}$$
|
| 27 |
-
|
| 28 |
-
### Loss Function
|
| 29 |
-
$$\mathcal{L} = \mathcal{L}_{\text{recon}} + \beta \cdot D_{KL}(q(z|x) \| p(z)) + \lambda \cdot \mathcal{L}_{\text{perceptual}}$$
|
| 30 |
-
|
| 31 |
-
Where:
|
| 32 |
-
- $\mathcal{L}_{\text{recon}} = \|x - \hat{x}\|_1$ (L1 reconstruction)
|
| 33 |
-
- $D_{KL}$ regularizes latent to $\mathcal{N}(0, I)$
|
| 34 |
-
- $\mathcal{L}_{\text{perceptual}}$ uses VGG features
|
| 35 |
-
|
| 36 |
-
## Config
|
| 37 |
-
|
| 38 |
-
| Parameter | Value |
|
| 39 |
-
|-----------|-------|
|
| 40 |
-
| Image size | 256x256 |
|
| 41 |
-
| Latent dim | 4 |
|
| 42 |
-
| Base channels | 128 |
|
| 43 |
-
| Channel mult | [1, 2, 4, 4] |
|
| 44 |
-
| Res blocks | 2 |
|
| 45 |
-
|
| 46 |
-
## Usage
|
| 47 |
-
|
| 48 |
-
```python
|
| 49 |
-
from safetensors.torch import load_file
|
| 50 |
-
from
|
| 51 |
-
|
| 52 |
-
# Load
|
| 53 |
-
state_dict = load_file("model.safetensors")
|
| 54 |
-
vae =
|
| 55 |
-
vae.load_state_dict(state_dict)
|
| 56 |
-
|
| 57 |
-
# Encode
|
| 58 |
-
latents = vae.encode(images) # [B, 4, 32, 32]
|
| 59 |
-
|
| 60 |
-
# Decode
|
| 61 |
-
reconstructed = vae.decode(latents) # [B, 3, 256, 256]
|
| 62 |
-
```
|
| 63 |
-
|
| 64 |
-
## Training
|
| 65 |
-
|
| 66 |
-
Trained on WikiArt (81K images) for 15K steps with:
|
| 67 |
-
- Batch size: 16
|
| 68 |
-
- Learning rate: 1e-4
|
| 69 |
-
- Mixed precision: bf16
|
| 70 |
-
|
| 71 |
-
### Training Curves
|
| 72 |
-
|
| 73 |
-

|
| 74 |
-
|
| 75 |
-
##
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: cc-by-nc-4.0
|
| 3 |
+
tags:
|
| 4 |
+
- vae
|
| 5 |
+
- image-generation
|
| 6 |
+
- diffusion
|
| 7 |
+
- complexity-diffusion
|
| 8 |
+
library_name: pytorch
|
| 9 |
+
pipeline_tag: image-to-image
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
# Complexity-Diffusion VAE
|
| 13 |
+
|
| 14 |
+
Variational Autoencoder for Complexity-Diffusion image generation pipeline.
|
| 15 |
+
|
| 16 |
+
## Architecture
|
| 17 |
+
|
| 18 |
+
**89M parameters** | 256x256 images | 4-channel latent space
|
| 19 |
+
|
| 20 |
+
### Encoder
|
| 21 |
+
$$z = \mathcal{E}(x) \in \mathbb{R}^{32 \times 32 \times 4}$$
|
| 22 |
+
|
| 23 |
+
Compresses 256x256x3 images to 32x32x4 latents (8x spatial compression).
|
| 24 |
+
|
| 25 |
+
### Decoder
|
| 26 |
+
$$\hat{x} = \mathcal{D}(z) \in \mathbb{R}^{256 \times 256 \times 3}$$
|
| 27 |
+
|
| 28 |
+
### Loss Function
|
| 29 |
+
$$\mathcal{L} = \mathcal{L}_{\text{recon}} + \beta \cdot D_{KL}(q(z|x) \| p(z)) + \lambda \cdot \mathcal{L}_{\text{perceptual}}$$
|
| 30 |
+
|
| 31 |
+
Where:
|
| 32 |
+
- $\mathcal{L}_{\text{recon}} = \|x - \hat{x}\|_1$ (L1 reconstruction)
|
| 33 |
+
- $D_{KL}$ regularizes latent to $\mathcal{N}(0, I)$
|
| 34 |
+
- $\mathcal{L}_{\text{perceptual}}$ uses VGG features
|
| 35 |
+
|
| 36 |
+
## Config
|
| 37 |
+
|
| 38 |
+
| Parameter | Value |
|
| 39 |
+
|-----------|-------|
|
| 40 |
+
| Image size | 256x256 |
|
| 41 |
+
| Latent dim | 4 |
|
| 42 |
+
| Base channels | 128 |
|
| 43 |
+
| Channel mult | [1, 2, 4, 4] |
|
| 44 |
+
| Res blocks | 2 |
|
| 45 |
+
|
| 46 |
+
## Usage
|
| 47 |
+
|
| 48 |
+
```python
|
| 49 |
+
from safetensors.torch import load_file
|
| 50 |
+
from complexity_diffusion.vae import ComplexityVAE
|
| 51 |
+
|
| 52 |
+
# Load
|
| 53 |
+
state_dict = load_file("model.safetensors")
|
| 54 |
+
vae = ComplexityVAE(image_size=256, base_channels=128, latent_dim=4)
|
| 55 |
+
vae.load_state_dict(state_dict)
|
| 56 |
+
|
| 57 |
+
# Encode
|
| 58 |
+
latents = vae.encode(images) # [B, 4, 32, 32]
|
| 59 |
+
|
| 60 |
+
# Decode
|
| 61 |
+
reconstructed = vae.decode(latents) # [B, 3, 256, 256]
|
| 62 |
+
```
|
| 63 |
+
|
| 64 |
+
## Training
|
| 65 |
+
|
| 66 |
+
Trained on WikiArt (81K images) for 15K steps with:
|
| 67 |
+
- Batch size: 16
|
| 68 |
+
- Learning rate: 1e-4
|
| 69 |
+
- Mixed precision: bf16
|
| 70 |
+
|
| 71 |
+
### Training Curves
|
| 72 |
+
|
| 73 |
+

|
| 74 |
+
|
| 75 |
+
## Part of Complexity Deep Ecosystem
|
| 76 |
+
|
| 77 |
+
This VAE is designed to work with the Complexity-Diffusion pipeline, leveraging:
|
| 78 |
+
- **INL Dynamics** for stable latent space training
|
| 79 |
+
- **Token-Routed architecture** for efficient processing
|
| 80 |
+
|
| 81 |
+
## Links
|
| 82 |
+
|
| 83 |
+
- [Complexity Deep](https://huggingface.co/Pacific-Prime)
|
| 84 |
+
- [PyPI Package](https://pypi.org/project/complexity-deep/)
|
| 85 |
+
|
| 86 |
+
## License
|
| 87 |
+
|
| 88 |
+
CC BY-NC 4.0 - Attribution-NonCommercial
|
| 89 |
+
|
| 90 |
+
Commercial use requires explicit permission from the author.
|