PabloGuinea commited on
Commit
97f111b
1 Parent(s): e04c8c8

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -12
README.md CHANGED
@@ -24,16 +24,16 @@ model-index:
24
  metrics:
25
  - name: Precision
26
  type: precision
27
- value: 0.4262295081967213
28
  - name: Recall
29
  type: recall
30
- value: 0.1927710843373494
31
  - name: F1
32
  type: f1
33
- value: 0.26547543075941293
34
  - name: Accuracy
35
  type: accuracy
36
- value: 0.9353597537514429
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
43
 
44
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset.
45
  It achieves the following results on the evaluation set:
46
- - Loss: 0.2958
47
- - Precision: 0.4262
48
- - Recall: 0.1928
49
- - F1: 0.2655
50
- - Accuracy: 0.9354
51
 
52
  ## Model description
53
 
@@ -72,14 +72,17 @@ The following hyperparameters were used during training:
72
  - seed: 42
73
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
  - lr_scheduler_type: linear
75
- - num_epochs: 2
76
 
77
  ### Training results
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
- | No log | 1.0 | 107 | 0.3133 | 0.3077 | 0.0556 | 0.0942 | 0.9298 |
82
- | No log | 2.0 | 214 | 0.2958 | 0.4262 | 0.1928 | 0.2655 | 0.9354 |
 
 
 
83
 
84
 
85
  ### Framework versions
 
24
  metrics:
25
  - name: Precision
26
  type: precision
27
+ value: 0.5251322751322751
28
  - name: Recall
29
  type: recall
30
+ value: 0.36793327154772937
31
  - name: F1
32
  type: f1
33
+ value: 0.43269754768392366
34
  - name: Accuracy
35
  type: accuracy
36
+ value: 0.9450643409858492
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
43
 
44
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset.
45
  It achieves the following results on the evaluation set:
46
+ - Loss: 0.2693
47
+ - Precision: 0.5251
48
+ - Recall: 0.3679
49
+ - F1: 0.4327
50
+ - Accuracy: 0.9451
51
 
52
  ## Model description
53
 
 
72
  - seed: 42
73
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
  - lr_scheduler_type: linear
75
+ - num_epochs: 5
76
 
77
  ### Training results
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | No log | 1.0 | 107 | 0.3088 | 0.3506 | 0.1446 | 0.2047 | 0.9328 |
82
+ | No log | 2.0 | 214 | 0.2634 | 0.5403 | 0.3170 | 0.3995 | 0.9414 |
83
+ | No log | 3.0 | 321 | 0.2530 | 0.5282 | 0.3559 | 0.4252 | 0.9435 |
84
+ | No log | 4.0 | 428 | 0.2587 | 0.5206 | 0.3753 | 0.4362 | 0.9446 |
85
+ | 0.1695 | 5.0 | 535 | 0.2693 | 0.5251 | 0.3679 | 0.4327 | 0.9451 |
86
 
87
 
88
  ### Framework versions