XuehaiPan commited on
Commit
26bf716
·
1 Parent(s): 252d9ec

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +105 -0
README.md ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - PKU-Alignment/PKU-SafeRLHF
4
+ language:
5
+ - en
6
+ tags:
7
+ - reinforcement-learning-from-human-feedback
8
+ - reinforcement-learning
9
+ - beaver
10
+ - safety
11
+ - llama
12
+ - ai-safety
13
+ - deepspeed
14
+ - rlhf
15
+ - alpaca
16
+ library_name: safe-rlhf
17
+ ---
18
+
19
+ # 🦫 Beaver's Cost Model
20
+
21
+ ## Model Details
22
+
23
+ The Beaver cost model is a preference model trained using the [PKU-SafeRLHF](https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF) dataset.
24
+ It can play a role in the safe RLHF algorithm, helping the Beaver model become more safe and harmless.
25
+
26
+ - **Developed by:** the [PKU-Alignment](https://github.com/PKU-Alignment) Team.
27
+ - **Model Type:** An auto-regressive language model based on the transformer architecture.
28
+ - **License:** Non-commercial license.
29
+ - **Fine-tuned from model:** [LLaMA](https://arxiv.org/abs/2302.13971), [Alpaca](https://github.com/tatsu-lab/stanford_alpaca).
30
+
31
+ ## Model Sources
32
+
33
+ - **Repository:** <https://github.com/PKU-Alignment/safe-rlhf>
34
+ - **Beaver:** <https://huggingface.co/PKU-Alignment/beaver-7b-v2.0>
35
+ - **Dataset:** <https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF>
36
+ - **Reward Model:** <https://huggingface.co/PKU-Alignment/beaver-7b-v2.0-reward>
37
+ - **Cost Model:** <https://huggingface.co/PKU-Alignment/beaver-7b-v2.0-cost>
38
+ - **Dataset Paper:** <https://arxiv.org/abs/2307.04657>
39
+ - **Paper:** <https://arxiv.org/abs/2310.12773>
40
+
41
+ ## How to Use the Cost Model
42
+
43
+ ```python
44
+ import torch
45
+ from transformers import AutoTokenizer
46
+ from safe_rlhf.models import AutoModelForScore
47
+
48
+ model = AutoModelForScore.from_pretrained('PKU-Alignment/beaver-7b-v2.0-cost', torch_dtype=torch.bfloat16, device_map='auto')
49
+ tokenizer = AutoTokenizer.from_pretrained('PKU-Alignment/beaver-7b-v2.0-cost')
50
+
51
+ input = 'BEGINNING OF CONVERSATION: USER: hello ASSISTANT:Hello! How can I help you today?'
52
+
53
+ input_ids = tokenizer(input, return_tensors='pt')
54
+ output = model(**input_ids)
55
+ print(output)
56
+
57
+ # ScoreModelOutput(
58
+ # scores=tensor([[[ 1.2031],
59
+ # [ 2.0469],
60
+ # [ 2.1875],
61
+ # [ 2.0938],
62
+ # [ 2.9219],
63
+ # [ 2.2656],
64
+ # [ 3.1250],
65
+ # [ 2.4219],
66
+ # [ 3.6406],
67
+ # [ 2.4062],
68
+ # [ 0.7383],
69
+ # [ 0.6719],
70
+ # [-0.4414],
71
+ # [-1.2734],
72
+ # [-1.6562],
73
+ # [ 0.3340],
74
+ # [ 0.2432],
75
+ # [-0.6914],
76
+ # [-1.0938],
77
+ # [-1.9453],
78
+ # [-3.0469],
79
+ # [-2.7812],
80
+ # [-2.2188],
81
+ # [-1.6250],
82
+ # [-1.5000],
83
+ # [-1.9922],
84
+ # [-2.6562],
85
+ # [-9.4375]]], grad_fn=<ToCopyBackward0>),
86
+ # end_scores=tensor([[-9.4375]], grad_fn=<ToCopyBackward0>),
87
+ # last_hidden_state=tensor([[[ 7.4219e-02, 3.6865e-02, -2.4414e-01, ..., -5.7129e-02,
88
+ # 1.1963e-01, 2.7734e-01],
89
+ # [-7.0703e-01, 1.0234e+00, 9.8145e-02, ..., 2.6719e+00,
90
+ # 8.2422e-01, 4.7119e-02],
91
+ # [-1.5332e-01, 1.0938e+00, -5.0000e-01, ..., -1.6699e-01,
92
+ # -6.0156e-01, 5.3516e-01],
93
+ # ...,
94
+ # [-1.0469e+00, 3.5858e-03, -1.1094e+00, ..., -1.1094e+00,
95
+ # 9.2578e-01, 1.3750e+00],
96
+ # [ 3.1445e-01, -9.7266e-01, -1.8984e+00, ..., -9.4141e-01,
97
+ # 2.0703e-01, 9.4531e-01],
98
+ # [ 5.5625e+00, -1.8672e+00, -1.3359e+00, ..., 8.0078e-01,
99
+ # -1.8906e+00, -1.3516e+00]]], dtype=torch.bfloat16,
100
+ # grad_fn=<ToCopyBackward0>),
101
+ # end_last_hidden_state=tensor([[ 5.5625, -1.8672, -1.3359, ..., 0.8008, -1.8906, -1.3516]],
102
+ # dtype=torch.bfloat16, grad_fn=<ToCopyBackward0>),
103
+ # end_index=tensor([27])
104
+ # )
105
+ ```