runnability
Browse files- .gitignore +3 -0
- recognize.py +61 -0
.gitignore
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
.DS_Store
|
| 2 |
+
.idea
|
| 3 |
+
|
recognize.py
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# recognize: processes two-levels-topic-recognition
|
| 2 |
+
# Authors: Paul Libbrecht, Pierre Günthner and Alexander Gantikow from the AISOP project
|
| 3 |
+
|
| 4 |
+
# Installation: Install spacy then...
|
| 5 |
+
# Usage: python recognize.py l1-model l2-models "this is a text"
|
| 6 |
+
# l1-model path: a relative path (starting from this script) pointing to the level-1 model folder
|
| 7 |
+
# l2-model path: a relative path (starting from this script) pointing to the folder containing a folder for each L2-label
|
| 8 |
+
# "this is a text": the text to recognize
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
import sys # System-specific parameters and functions, part of Py
|
| 12 |
+
import spacy # Natural language processing
|
| 13 |
+
from pathlib import Path # Object-oriented filesystem paths, part of Py
|
| 14 |
+
import json # JSON object dumping functions
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
RoundTo = 2 # Round to precision of n decimals
|
| 18 |
+
Encoding = 'utf8' # Encoding of the html file to be read and parsed via BeautifulSoup
|
| 19 |
+
ScoreThreshold = 0.2 # Min. spacy probability value for an element to be analysed/enriched.
|
| 20 |
+
MaxResults = 3 # Max. number of concepts/labels added to an html element
|
| 21 |
+
ParagraphMinLetters = 10 # Min. number of letters of paragraph to be considered in analysis
|
| 22 |
+
ListMinLetters = 10 # Min. number of letters of <ul> and <ol> to be considered in analysis
|
| 23 |
+
|
| 24 |
+
SubModels = {}
|
| 25 |
+
|
| 26 |
+
Nlp = spacy.load(sys.argv[1])
|
| 27 |
+
SubModelDir = Path(__file__).parent.joinpath(sys.argv[2]).absolute()
|
| 28 |
+
input = sys.argv[3]
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def filterDoc(doc, scoreThreshold, maxResults, roundTo=2):
|
| 32 |
+
cats = doc.cats.items()
|
| 33 |
+
filt = list(filter(lambda c: c[1] > scoreThreshold, cats))
|
| 34 |
+
sort = sorted(filt, key=lambda c: c[1], reverse=True)
|
| 35 |
+
maxi = sort[0:maxResults]
|
| 36 |
+
rund = [(l[0], round(l[1], roundTo)) for l in maxi ]
|
| 37 |
+
return dict(rund)
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def recognize(text):
|
| 42 |
+
global Nlp
|
| 43 |
+
# find l1 labels
|
| 44 |
+
labels = filterDoc(Nlp(text), ScoreThreshold, MaxResults)
|
| 45 |
+
|
| 46 |
+
# find L2 labels
|
| 47 |
+
relabels = dict()
|
| 48 |
+
for label in labels.keys():
|
| 49 |
+
label2 = label.strip()
|
| 50 |
+
SubModelPath = SubModelDir.joinpath(label2).absolute()
|
| 51 |
+
if SubModelPath.exists():
|
| 52 |
+
Nlp = spacy.load(SubModelPath)
|
| 53 |
+
docSub = filterDoc(Nlp(text), ScoreThreshold, MaxResults)
|
| 54 |
+
relabels[label2] = {'score': labels[label], 'subs': docSub}
|
| 55 |
+
else:
|
| 56 |
+
relabels[label2] = {'score': labels[label]}
|
| 57 |
+
relabels["messages"] = "Submodel path \"" + str(SubModelPath) + "\" not found"
|
| 58 |
+
|
| 59 |
+
return relabels
|
| 60 |
+
|
| 61 |
+
print(json.dumps(recognize(input)))
|