P3ps commited on
Commit
402b087
1 Parent(s): fbbc879

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +83 -0
README.md ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - glue
7
+ metrics:
8
+ - accuracy
9
+ - f1
10
+ model-index:
11
+ - name: test-trainer-glue-mrpc
12
+ results:
13
+ - task:
14
+ name: Text Classification
15
+ type: text-classification
16
+ dataset:
17
+ name: glue
18
+ type: glue
19
+ config: mrpc
20
+ split: validation
21
+ args: mrpc
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value:
26
+ accuracy: 0.8627450980392157
27
+ - name: F1
28
+ type: f1
29
+ value: 0.902439024390244
30
+ ---
31
+
32
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
33
+ should probably proofread and complete it, then remove this comment. -->
34
+
35
+ # test-trainer-glue-mrpc
36
+
37
+ This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset.
38
+ It achieves the following results on the evaluation set:
39
+ - Loss: 0.6850
40
+ - Accuracy: {'accuracy': 0.8627450980392157}
41
+ - F1: 0.9024
42
+
43
+ ## Model description
44
+
45
+ More information needed
46
+
47
+ ## Intended uses & limitations
48
+
49
+ More information needed
50
+
51
+ ## Training and evaluation data
52
+
53
+ More information needed
54
+
55
+ ## Training procedure
56
+
57
+ ### Training hyperparameters
58
+
59
+ The following hyperparameters were used during training:
60
+ - learning_rate: 5e-05
61
+ - train_batch_size: 8
62
+ - eval_batch_size: 8
63
+ - seed: 42
64
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
65
+ - lr_scheduler_type: linear
66
+ - num_epochs: 3.0
67
+ - mixed_precision_training: Native AMP
68
+
69
+ ### Training results
70
+
71
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
72
+ |:-------------:|:-----:|:----:|:---------------:|:--------------------------------:|:------:|
73
+ | No log | 1.0 | 459 | 0.3762 | {'accuracy': 0.8455882352941176} | 0.8873 |
74
+ | 0.4903 | 2.0 | 918 | 0.5500 | {'accuracy': 0.8431372549019608} | 0.8923 |
75
+ | 0.2654 | 3.0 | 1377 | 0.6850 | {'accuracy': 0.8627450980392157} | 0.9024 |
76
+
77
+
78
+ ### Framework versions
79
+
80
+ - Transformers 4.28.1
81
+ - Pytorch 2.0.0+cu118
82
+ - Datasets 2.12.0
83
+ - Tokenizers 0.13.3