Oysiyl commited on
Commit
19d5969
1 Parent(s): 6540847

End of training

Browse files
Files changed (1) hide show
  1. README.md +67 -0
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: ylacombe/w2v-bert-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - wer
7
+ model-index:
8
+ - name: w2v-bert-2.0-dutch-colab-CV16.0
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # w2v-bert-2.0-dutch-colab-CV16.0
16
+
17
+ This model is a fine-tuned version of [ylacombe/w2v-bert-2.0](https://huggingface.co/ylacombe/w2v-bert-2.0) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.0920
20
+ - Wer: 0.0573
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 5e-05
40
+ - train_batch_size: 64
41
+ - eval_batch_size: 8
42
+ - seed: 42
43
+ - gradient_accumulation_steps: 2
44
+ - total_train_batch_size: 128
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_steps: 500
48
+ - num_epochs: 5
49
+ - mixed_precision_training: Native AMP
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
54
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
55
+ | 1.3106 | 1.0 | 358 | 0.1833 | 0.1350 |
56
+ | 0.0924 | 2.0 | 716 | 0.1365 | 0.0932 |
57
+ | 0.0521 | 3.0 | 1074 | 0.1121 | 0.0732 |
58
+ | 0.033 | 3.99 | 1432 | 0.0957 | 0.0619 |
59
+ | 0.0221 | 4.99 | 1790 | 0.0920 | 0.0573 |
60
+
61
+
62
+ ### Framework versions
63
+
64
+ - Transformers 4.37.0.dev0
65
+ - Pytorch 1.12.1+cu116
66
+ - Datasets 2.4.0
67
+ - Tokenizers 0.15.2