|
from typing import Dict, List, Text, Any |
|
import re |
|
from transformers import SpeechT5ForTextToSpeech |
|
from transformers import SpeechT5Processor |
|
from transformers import SpeechT5HifiGan |
|
import soundfile |
|
import torch |
|
import numpy as np |
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
if device.type != 'cuda': |
|
raise ValueError("need to run on GPU") |
|
|
|
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16 |
|
|
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
|
|
self.model_id = "Oysiyl/speecht5_tts_common_voice_uk" |
|
self.model = SpeechT5ForTextToSpeech.from_pretrained(self.model_id, torch_dtype=dtype).to(device) |
|
self.processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") |
|
self.vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device) |
|
self.speaker_embeddings = torch.tensor(np.load("embed.npy"), dtype=dtype).to(device) |
|
|
|
@staticmethod |
|
def remove_special_characters_s(text: Text) -> Text: |
|
chars_to_remove_regex = '[\…\–\"\“\%\‘\”\�\»\«\„\`\'́]' |
|
|
|
text = re.sub(chars_to_remove_regex, '', text) |
|
text = re.sub("՚", "'", text) |
|
text = re.sub("’", "'", text) |
|
text = re.sub(r'ы', 'и', text) |
|
text = text.lower() |
|
return text |
|
|
|
@staticmethod |
|
def cyrillic_to_latin(text: Text) -> Text: |
|
replacements = [ |
|
('а', 'a'), |
|
('б', 'b'), |
|
('в', 'v'), |
|
('г', 'h'), |
|
('д', 'd'), |
|
('е', 'e'), |
|
('ж', 'zh'), |
|
('з', 'z'), |
|
('и', 'y'), |
|
('й', 'j'), |
|
('к', 'k'), |
|
('л', 'l'), |
|
('м', 'm'), |
|
('н', 'n'), |
|
('о', 'o'), |
|
('п', 'p'), |
|
('р', 'r'), |
|
('с', 's'), |
|
('т', 't'), |
|
('у', 'u'), |
|
('ф', 'f'), |
|
('х', 'h'), |
|
('ц', 'ts'), |
|
('ч', 'ch'), |
|
('ш', 'sh'), |
|
('щ', 'sch'), |
|
('ь', "'"), |
|
('ю', 'ju'), |
|
('я', 'ja'), |
|
('є', 'je'), |
|
('і', 'i'), |
|
('ї', 'ji'), |
|
('ґ', 'g') |
|
] |
|
|
|
for src, dst in replacements: |
|
text = text.replace(src, dst) |
|
return text |
|
|
|
def __call__(self, data: Any) -> List[List[Dict[str, float]]]: |
|
""" |
|
:param data: A dictionary contains `inputs`. |
|
:return: A dictionary with `image` field contains image in base64. |
|
""" |
|
text = data.pop("inputs", None) |
|
|
|
|
|
if text is None: |
|
return {"error": "Please provide a text."} |
|
|
|
|
|
text = self.remove_special_characters_s(text) |
|
text = self.cyrillic_to_latin(text) |
|
input_ids = self.processor(text=text, return_tensors="pt")['input_ids'].to(device) |
|
spectrogram = self.model.generate_speech(input_ids, self.speaker_embeddings) |
|
with torch.no_grad(): |
|
speech = self.vocoder(spectrogram) |
|
if device.type != 'cuda': |
|
out = speech.numpy() |
|
else: |
|
out = speech.cpu().numpy() |
|
|
|
|
|
return out |
|
|