OrlikB
commited on
Commit
·
b012a37
0
Parent(s):
initial commit
Browse files- .gitattributes +35 -0
- 1_Pooling/config.json +7 -0
- 2_Normalize/.gitkeep +0 -0
- README.md +1273 -0
- config.json +28 -0
- modules.json +20 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +15 -0
- tokenizer.json +0 -0
- tokenizer_config.json +15 -0
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
2_Normalize/.gitkeep
ADDED
File without changes
|
README.md
ADDED
@@ -0,0 +1,1273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- feature-extraction
|
5 |
+
- sentence-similarity
|
6 |
+
- transformers
|
7 |
+
- mteb
|
8 |
+
license: lgpl
|
9 |
+
language:
|
10 |
+
- pl
|
11 |
+
pipeline_tag: sentence-similarity
|
12 |
+
model-index:
|
13 |
+
- name: st-polish-kartonberta-base-alpha-v1
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
type: Clustering
|
17 |
+
dataset:
|
18 |
+
type: PL-MTEB/8tags-clustering
|
19 |
+
name: MTEB 8TagsClustering
|
20 |
+
config: default
|
21 |
+
split: test
|
22 |
+
revision: None
|
23 |
+
metrics:
|
24 |
+
- type: v_measure
|
25 |
+
value: 32.85180358455615
|
26 |
+
- task:
|
27 |
+
type: Classification
|
28 |
+
dataset:
|
29 |
+
type: PL-MTEB/allegro-reviews
|
30 |
+
name: MTEB AllegroReviews
|
31 |
+
config: default
|
32 |
+
split: test
|
33 |
+
revision: None
|
34 |
+
metrics:
|
35 |
+
- type: accuracy
|
36 |
+
value: 40.188866799204774
|
37 |
+
- type: f1
|
38 |
+
value: 34.71127012684797
|
39 |
+
- task:
|
40 |
+
type: Retrieval
|
41 |
+
dataset:
|
42 |
+
type: arguana-pl
|
43 |
+
name: MTEB ArguAna-PL
|
44 |
+
config: default
|
45 |
+
split: test
|
46 |
+
revision: None
|
47 |
+
metrics:
|
48 |
+
- type: map_at_1
|
49 |
+
value: 30.939
|
50 |
+
- type: map_at_10
|
51 |
+
value: 47.467999999999996
|
52 |
+
- type: map_at_100
|
53 |
+
value: 48.303000000000004
|
54 |
+
- type: map_at_1000
|
55 |
+
value: 48.308
|
56 |
+
- type: map_at_3
|
57 |
+
value: 43.22
|
58 |
+
- type: map_at_5
|
59 |
+
value: 45.616
|
60 |
+
- type: mrr_at_1
|
61 |
+
value: 31.863000000000003
|
62 |
+
- type: mrr_at_10
|
63 |
+
value: 47.829
|
64 |
+
- type: mrr_at_100
|
65 |
+
value: 48.664
|
66 |
+
- type: mrr_at_1000
|
67 |
+
value: 48.67
|
68 |
+
- type: mrr_at_3
|
69 |
+
value: 43.492
|
70 |
+
- type: mrr_at_5
|
71 |
+
value: 46.006
|
72 |
+
- type: ndcg_at_1
|
73 |
+
value: 30.939
|
74 |
+
- type: ndcg_at_10
|
75 |
+
value: 56.058
|
76 |
+
- type: ndcg_at_100
|
77 |
+
value: 59.562000000000005
|
78 |
+
- type: ndcg_at_1000
|
79 |
+
value: 59.69799999999999
|
80 |
+
- type: ndcg_at_3
|
81 |
+
value: 47.260000000000005
|
82 |
+
- type: ndcg_at_5
|
83 |
+
value: 51.587
|
84 |
+
- type: precision_at_1
|
85 |
+
value: 30.939
|
86 |
+
- type: precision_at_10
|
87 |
+
value: 8.329
|
88 |
+
- type: precision_at_100
|
89 |
+
value: 0.984
|
90 |
+
- type: precision_at_1000
|
91 |
+
value: 0.1
|
92 |
+
- type: precision_at_3
|
93 |
+
value: 19.654
|
94 |
+
- type: precision_at_5
|
95 |
+
value: 13.898
|
96 |
+
- type: recall_at_1
|
97 |
+
value: 30.939
|
98 |
+
- type: recall_at_10
|
99 |
+
value: 83.286
|
100 |
+
- type: recall_at_100
|
101 |
+
value: 98.43499999999999
|
102 |
+
- type: recall_at_1000
|
103 |
+
value: 99.502
|
104 |
+
- type: recall_at_3
|
105 |
+
value: 58.962
|
106 |
+
- type: recall_at_5
|
107 |
+
value: 69.488
|
108 |
+
- task:
|
109 |
+
type: Classification
|
110 |
+
dataset:
|
111 |
+
type: PL-MTEB/cbd
|
112 |
+
name: MTEB CBD
|
113 |
+
config: default
|
114 |
+
split: test
|
115 |
+
revision: None
|
116 |
+
metrics:
|
117 |
+
- type: accuracy
|
118 |
+
value: 67.69000000000001
|
119 |
+
- type: ap
|
120 |
+
value: 21.078799692467182
|
121 |
+
- type: f1
|
122 |
+
value: 56.80107173953953
|
123 |
+
- task:
|
124 |
+
type: PairClassification
|
125 |
+
dataset:
|
126 |
+
type: PL-MTEB/cdsce-pairclassification
|
127 |
+
name: MTEB CDSC-E
|
128 |
+
config: default
|
129 |
+
split: test
|
130 |
+
revision: None
|
131 |
+
metrics:
|
132 |
+
- type: cos_sim_accuracy
|
133 |
+
value: 89.2
|
134 |
+
- type: cos_sim_ap
|
135 |
+
value: 79.11674608786898
|
136 |
+
- type: cos_sim_f1
|
137 |
+
value: 68.83468834688347
|
138 |
+
- type: cos_sim_precision
|
139 |
+
value: 70.94972067039106
|
140 |
+
- type: cos_sim_recall
|
141 |
+
value: 66.84210526315789
|
142 |
+
- type: dot_accuracy
|
143 |
+
value: 89.2
|
144 |
+
- type: dot_ap
|
145 |
+
value: 79.11674608786898
|
146 |
+
- type: dot_f1
|
147 |
+
value: 68.83468834688347
|
148 |
+
- type: dot_precision
|
149 |
+
value: 70.94972067039106
|
150 |
+
- type: dot_recall
|
151 |
+
value: 66.84210526315789
|
152 |
+
- type: euclidean_accuracy
|
153 |
+
value: 89.2
|
154 |
+
- type: euclidean_ap
|
155 |
+
value: 79.11674608786898
|
156 |
+
- type: euclidean_f1
|
157 |
+
value: 68.83468834688347
|
158 |
+
- type: euclidean_precision
|
159 |
+
value: 70.94972067039106
|
160 |
+
- type: euclidean_recall
|
161 |
+
value: 66.84210526315789
|
162 |
+
- type: manhattan_accuracy
|
163 |
+
value: 89.1
|
164 |
+
- type: manhattan_ap
|
165 |
+
value: 79.1220443374692
|
166 |
+
- type: manhattan_f1
|
167 |
+
value: 69.02173913043478
|
168 |
+
- type: manhattan_precision
|
169 |
+
value: 71.34831460674157
|
170 |
+
- type: manhattan_recall
|
171 |
+
value: 66.84210526315789
|
172 |
+
- type: max_accuracy
|
173 |
+
value: 89.2
|
174 |
+
- type: max_ap
|
175 |
+
value: 79.1220443374692
|
176 |
+
- type: max_f1
|
177 |
+
value: 69.02173913043478
|
178 |
+
- task:
|
179 |
+
type: STS
|
180 |
+
dataset:
|
181 |
+
type: PL-MTEB/cdscr-sts
|
182 |
+
name: MTEB CDSC-R
|
183 |
+
config: default
|
184 |
+
split: test
|
185 |
+
revision: None
|
186 |
+
metrics:
|
187 |
+
- type: cos_sim_pearson
|
188 |
+
value: 91.41534744278998
|
189 |
+
- type: cos_sim_spearman
|
190 |
+
value: 92.12681551821147
|
191 |
+
- type: euclidean_pearson
|
192 |
+
value: 91.74369794485992
|
193 |
+
- type: euclidean_spearman
|
194 |
+
value: 92.12685848456046
|
195 |
+
- type: manhattan_pearson
|
196 |
+
value: 91.66651938751657
|
197 |
+
- type: manhattan_spearman
|
198 |
+
value: 92.057603126734
|
199 |
+
- task:
|
200 |
+
type: Retrieval
|
201 |
+
dataset:
|
202 |
+
type: dbpedia-pl
|
203 |
+
name: MTEB DBPedia-PL
|
204 |
+
config: default
|
205 |
+
split: test
|
206 |
+
revision: None
|
207 |
+
metrics:
|
208 |
+
- type: map_at_1
|
209 |
+
value: 5.8709999999999996
|
210 |
+
- type: map_at_10
|
211 |
+
value: 12.486
|
212 |
+
- type: map_at_100
|
213 |
+
value: 16.897000000000002
|
214 |
+
- type: map_at_1000
|
215 |
+
value: 18.056
|
216 |
+
- type: map_at_3
|
217 |
+
value: 8.958
|
218 |
+
- type: map_at_5
|
219 |
+
value: 10.57
|
220 |
+
- type: mrr_at_1
|
221 |
+
value: 44.0
|
222 |
+
- type: mrr_at_10
|
223 |
+
value: 53.830999999999996
|
224 |
+
- type: mrr_at_100
|
225 |
+
value: 54.54
|
226 |
+
- type: mrr_at_1000
|
227 |
+
value: 54.568000000000005
|
228 |
+
- type: mrr_at_3
|
229 |
+
value: 51.87500000000001
|
230 |
+
- type: mrr_at_5
|
231 |
+
value: 53.113
|
232 |
+
- type: ndcg_at_1
|
233 |
+
value: 34.625
|
234 |
+
- type: ndcg_at_10
|
235 |
+
value: 26.996
|
236 |
+
- type: ndcg_at_100
|
237 |
+
value: 31.052999999999997
|
238 |
+
- type: ndcg_at_1000
|
239 |
+
value: 38.208
|
240 |
+
- type: ndcg_at_3
|
241 |
+
value: 29.471000000000004
|
242 |
+
- type: ndcg_at_5
|
243 |
+
value: 28.364
|
244 |
+
- type: precision_at_1
|
245 |
+
value: 44.0
|
246 |
+
- type: precision_at_10
|
247 |
+
value: 21.45
|
248 |
+
- type: precision_at_100
|
249 |
+
value: 6.837
|
250 |
+
- type: precision_at_1000
|
251 |
+
value: 1.6019999999999999
|
252 |
+
- type: precision_at_3
|
253 |
+
value: 32.333
|
254 |
+
- type: precision_at_5
|
255 |
+
value: 27.800000000000004
|
256 |
+
- type: recall_at_1
|
257 |
+
value: 5.8709999999999996
|
258 |
+
- type: recall_at_10
|
259 |
+
value: 17.318
|
260 |
+
- type: recall_at_100
|
261 |
+
value: 36.854
|
262 |
+
- type: recall_at_1000
|
263 |
+
value: 60.468999999999994
|
264 |
+
- type: recall_at_3
|
265 |
+
value: 10.213999999999999
|
266 |
+
- type: recall_at_5
|
267 |
+
value: 13.364
|
268 |
+
- task:
|
269 |
+
type: Retrieval
|
270 |
+
dataset:
|
271 |
+
type: fiqa-pl
|
272 |
+
name: MTEB FiQA-PL
|
273 |
+
config: default
|
274 |
+
split: test
|
275 |
+
revision: None
|
276 |
+
metrics:
|
277 |
+
- type: map_at_1
|
278 |
+
value: 10.289
|
279 |
+
- type: map_at_10
|
280 |
+
value: 18.285999999999998
|
281 |
+
- type: map_at_100
|
282 |
+
value: 19.743
|
283 |
+
- type: map_at_1000
|
284 |
+
value: 19.964000000000002
|
285 |
+
- type: map_at_3
|
286 |
+
value: 15.193000000000001
|
287 |
+
- type: map_at_5
|
288 |
+
value: 16.962
|
289 |
+
- type: mrr_at_1
|
290 |
+
value: 21.914
|
291 |
+
- type: mrr_at_10
|
292 |
+
value: 30.653999999999996
|
293 |
+
- type: mrr_at_100
|
294 |
+
value: 31.623
|
295 |
+
- type: mrr_at_1000
|
296 |
+
value: 31.701
|
297 |
+
- type: mrr_at_3
|
298 |
+
value: 27.855
|
299 |
+
- type: mrr_at_5
|
300 |
+
value: 29.514000000000003
|
301 |
+
- type: ndcg_at_1
|
302 |
+
value: 21.914
|
303 |
+
- type: ndcg_at_10
|
304 |
+
value: 24.733
|
305 |
+
- type: ndcg_at_100
|
306 |
+
value: 31.253999999999998
|
307 |
+
- type: ndcg_at_1000
|
308 |
+
value: 35.617
|
309 |
+
- type: ndcg_at_3
|
310 |
+
value: 20.962
|
311 |
+
- type: ndcg_at_5
|
312 |
+
value: 22.553
|
313 |
+
- type: precision_at_1
|
314 |
+
value: 21.914
|
315 |
+
- type: precision_at_10
|
316 |
+
value: 7.346
|
317 |
+
- type: precision_at_100
|
318 |
+
value: 1.389
|
319 |
+
- type: precision_at_1000
|
320 |
+
value: 0.214
|
321 |
+
- type: precision_at_3
|
322 |
+
value: 14.352
|
323 |
+
- type: precision_at_5
|
324 |
+
value: 11.42
|
325 |
+
- type: recall_at_1
|
326 |
+
value: 10.289
|
327 |
+
- type: recall_at_10
|
328 |
+
value: 31.459
|
329 |
+
- type: recall_at_100
|
330 |
+
value: 56.854000000000006
|
331 |
+
- type: recall_at_1000
|
332 |
+
value: 83.722
|
333 |
+
- type: recall_at_3
|
334 |
+
value: 19.457
|
335 |
+
- type: recall_at_5
|
336 |
+
value: 24.767
|
337 |
+
- task:
|
338 |
+
type: Retrieval
|
339 |
+
dataset:
|
340 |
+
type: hotpotqa-pl
|
341 |
+
name: MTEB HotpotQA-PL
|
342 |
+
config: default
|
343 |
+
split: test
|
344 |
+
revision: None
|
345 |
+
metrics:
|
346 |
+
- type: map_at_1
|
347 |
+
value: 29.669
|
348 |
+
- type: map_at_10
|
349 |
+
value: 41.615
|
350 |
+
- type: map_at_100
|
351 |
+
value: 42.571999999999996
|
352 |
+
- type: map_at_1000
|
353 |
+
value: 42.662
|
354 |
+
- type: map_at_3
|
355 |
+
value: 38.938
|
356 |
+
- type: map_at_5
|
357 |
+
value: 40.541
|
358 |
+
- type: mrr_at_1
|
359 |
+
value: 59.338
|
360 |
+
- type: mrr_at_10
|
361 |
+
value: 66.93900000000001
|
362 |
+
- type: mrr_at_100
|
363 |
+
value: 67.361
|
364 |
+
- type: mrr_at_1000
|
365 |
+
value: 67.38499999999999
|
366 |
+
- type: mrr_at_3
|
367 |
+
value: 65.384
|
368 |
+
- type: mrr_at_5
|
369 |
+
value: 66.345
|
370 |
+
- type: ndcg_at_1
|
371 |
+
value: 59.338
|
372 |
+
- type: ndcg_at_10
|
373 |
+
value: 50.607
|
374 |
+
- type: ndcg_at_100
|
375 |
+
value: 54.342999999999996
|
376 |
+
- type: ndcg_at_1000
|
377 |
+
value: 56.286
|
378 |
+
- type: ndcg_at_3
|
379 |
+
value: 46.289
|
380 |
+
- type: ndcg_at_5
|
381 |
+
value: 48.581
|
382 |
+
- type: precision_at_1
|
383 |
+
value: 59.338
|
384 |
+
- type: precision_at_10
|
385 |
+
value: 10.585
|
386 |
+
- type: precision_at_100
|
387 |
+
value: 1.353
|
388 |
+
- type: precision_at_1000
|
389 |
+
value: 0.161
|
390 |
+
- type: precision_at_3
|
391 |
+
value: 28.877000000000002
|
392 |
+
- type: precision_at_5
|
393 |
+
value: 19.133
|
394 |
+
- type: recall_at_1
|
395 |
+
value: 29.669
|
396 |
+
- type: recall_at_10
|
397 |
+
value: 52.92400000000001
|
398 |
+
- type: recall_at_100
|
399 |
+
value: 67.657
|
400 |
+
- type: recall_at_1000
|
401 |
+
value: 80.628
|
402 |
+
- type: recall_at_3
|
403 |
+
value: 43.315
|
404 |
+
- type: recall_at_5
|
405 |
+
value: 47.833
|
406 |
+
- task:
|
407 |
+
type: Retrieval
|
408 |
+
dataset:
|
409 |
+
type: msmarco-pl
|
410 |
+
name: MTEB MSMARCO-PL
|
411 |
+
config: default
|
412 |
+
split: test
|
413 |
+
revision: None
|
414 |
+
metrics:
|
415 |
+
- type: map_at_1
|
416 |
+
value: 0.997
|
417 |
+
- type: map_at_10
|
418 |
+
value: 7.481999999999999
|
419 |
+
- type: map_at_100
|
420 |
+
value: 20.208000000000002
|
421 |
+
- type: map_at_1000
|
422 |
+
value: 25.601000000000003
|
423 |
+
- type: map_at_3
|
424 |
+
value: 3.055
|
425 |
+
- type: map_at_5
|
426 |
+
value: 4.853
|
427 |
+
- type: mrr_at_1
|
428 |
+
value: 55.814
|
429 |
+
- type: mrr_at_10
|
430 |
+
value: 64.651
|
431 |
+
- type: mrr_at_100
|
432 |
+
value: 65.003
|
433 |
+
- type: mrr_at_1000
|
434 |
+
value: 65.05199999999999
|
435 |
+
- type: mrr_at_3
|
436 |
+
value: 62.403
|
437 |
+
- type: mrr_at_5
|
438 |
+
value: 64.031
|
439 |
+
- type: ndcg_at_1
|
440 |
+
value: 44.186
|
441 |
+
- type: ndcg_at_10
|
442 |
+
value: 43.25
|
443 |
+
- type: ndcg_at_100
|
444 |
+
value: 40.515
|
445 |
+
- type: ndcg_at_1000
|
446 |
+
value: 48.345
|
447 |
+
- type: ndcg_at_3
|
448 |
+
value: 45.829
|
449 |
+
- type: ndcg_at_5
|
450 |
+
value: 46.477000000000004
|
451 |
+
- type: precision_at_1
|
452 |
+
value: 55.814
|
453 |
+
- type: precision_at_10
|
454 |
+
value: 50.465
|
455 |
+
- type: precision_at_100
|
456 |
+
value: 25.419000000000004
|
457 |
+
- type: precision_at_1000
|
458 |
+
value: 5.0840000000000005
|
459 |
+
- type: precision_at_3
|
460 |
+
value: 58.14
|
461 |
+
- type: precision_at_5
|
462 |
+
value: 57.67400000000001
|
463 |
+
- type: recall_at_1
|
464 |
+
value: 0.997
|
465 |
+
- type: recall_at_10
|
466 |
+
value: 8.985999999999999
|
467 |
+
- type: recall_at_100
|
468 |
+
value: 33.221000000000004
|
469 |
+
- type: recall_at_1000
|
470 |
+
value: 58.836999999999996
|
471 |
+
- type: recall_at_3
|
472 |
+
value: 3.472
|
473 |
+
- type: recall_at_5
|
474 |
+
value: 5.545
|
475 |
+
- task:
|
476 |
+
type: Classification
|
477 |
+
dataset:
|
478 |
+
type: mteb/amazon_massive_intent
|
479 |
+
name: MTEB MassiveIntentClassification (pl)
|
480 |
+
config: pl
|
481 |
+
split: test
|
482 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
483 |
+
metrics:
|
484 |
+
- type: accuracy
|
485 |
+
value: 68.19771351714861
|
486 |
+
- type: f1
|
487 |
+
value: 64.75039989217822
|
488 |
+
- task:
|
489 |
+
type: Classification
|
490 |
+
dataset:
|
491 |
+
type: mteb/amazon_massive_scenario
|
492 |
+
name: MTEB MassiveScenarioClassification (pl)
|
493 |
+
config: pl
|
494 |
+
split: test
|
495 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
496 |
+
metrics:
|
497 |
+
- type: accuracy
|
498 |
+
value: 73.9677202420982
|
499 |
+
- type: f1
|
500 |
+
value: 73.72287107577753
|
501 |
+
- task:
|
502 |
+
type: Retrieval
|
503 |
+
dataset:
|
504 |
+
type: nfcorpus-pl
|
505 |
+
name: MTEB NFCorpus-PL
|
506 |
+
config: default
|
507 |
+
split: test
|
508 |
+
revision: None
|
509 |
+
metrics:
|
510 |
+
- type: map_at_1
|
511 |
+
value: 5.167
|
512 |
+
- type: map_at_10
|
513 |
+
value: 10.791
|
514 |
+
- type: map_at_100
|
515 |
+
value: 14.072999999999999
|
516 |
+
- type: map_at_1000
|
517 |
+
value: 15.568000000000001
|
518 |
+
- type: map_at_3
|
519 |
+
value: 7.847999999999999
|
520 |
+
- type: map_at_5
|
521 |
+
value: 9.112
|
522 |
+
- type: mrr_at_1
|
523 |
+
value: 42.105
|
524 |
+
- type: mrr_at_10
|
525 |
+
value: 49.933
|
526 |
+
- type: mrr_at_100
|
527 |
+
value: 50.659
|
528 |
+
- type: mrr_at_1000
|
529 |
+
value: 50.705
|
530 |
+
- type: mrr_at_3
|
531 |
+
value: 47.988
|
532 |
+
- type: mrr_at_5
|
533 |
+
value: 49.056
|
534 |
+
- type: ndcg_at_1
|
535 |
+
value: 39.938
|
536 |
+
- type: ndcg_at_10
|
537 |
+
value: 31.147000000000002
|
538 |
+
- type: ndcg_at_100
|
539 |
+
value: 29.336000000000002
|
540 |
+
- type: ndcg_at_1000
|
541 |
+
value: 38.147
|
542 |
+
- type: ndcg_at_3
|
543 |
+
value: 35.607
|
544 |
+
- type: ndcg_at_5
|
545 |
+
value: 33.725
|
546 |
+
- type: precision_at_1
|
547 |
+
value: 41.486000000000004
|
548 |
+
- type: precision_at_10
|
549 |
+
value: 23.901
|
550 |
+
- type: precision_at_100
|
551 |
+
value: 7.960000000000001
|
552 |
+
- type: precision_at_1000
|
553 |
+
value: 2.086
|
554 |
+
- type: precision_at_3
|
555 |
+
value: 33.437
|
556 |
+
- type: precision_at_5
|
557 |
+
value: 29.598000000000003
|
558 |
+
- type: recall_at_1
|
559 |
+
value: 5.167
|
560 |
+
- type: recall_at_10
|
561 |
+
value: 14.244000000000002
|
562 |
+
- type: recall_at_100
|
563 |
+
value: 31.192999999999998
|
564 |
+
- type: recall_at_1000
|
565 |
+
value: 62.41799999999999
|
566 |
+
- type: recall_at_3
|
567 |
+
value: 8.697000000000001
|
568 |
+
- type: recall_at_5
|
569 |
+
value: 10.911
|
570 |
+
- task:
|
571 |
+
type: Retrieval
|
572 |
+
dataset:
|
573 |
+
type: nq-pl
|
574 |
+
name: MTEB NQ-PL
|
575 |
+
config: default
|
576 |
+
split: test
|
577 |
+
revision: None
|
578 |
+
metrics:
|
579 |
+
- type: map_at_1
|
580 |
+
value: 14.417
|
581 |
+
- type: map_at_10
|
582 |
+
value: 23.330000000000002
|
583 |
+
- type: map_at_100
|
584 |
+
value: 24.521
|
585 |
+
- type: map_at_1000
|
586 |
+
value: 24.604
|
587 |
+
- type: map_at_3
|
588 |
+
value: 20.076
|
589 |
+
- type: map_at_5
|
590 |
+
value: 21.854000000000003
|
591 |
+
- type: mrr_at_1
|
592 |
+
value: 16.454
|
593 |
+
- type: mrr_at_10
|
594 |
+
value: 25.402
|
595 |
+
- type: mrr_at_100
|
596 |
+
value: 26.411
|
597 |
+
- type: mrr_at_1000
|
598 |
+
value: 26.479000000000003
|
599 |
+
- type: mrr_at_3
|
600 |
+
value: 22.369
|
601 |
+
- type: mrr_at_5
|
602 |
+
value: 24.047
|
603 |
+
- type: ndcg_at_1
|
604 |
+
value: 16.454
|
605 |
+
- type: ndcg_at_10
|
606 |
+
value: 28.886
|
607 |
+
- type: ndcg_at_100
|
608 |
+
value: 34.489999999999995
|
609 |
+
- type: ndcg_at_1000
|
610 |
+
value: 36.687999999999995
|
611 |
+
- type: ndcg_at_3
|
612 |
+
value: 22.421
|
613 |
+
- type: ndcg_at_5
|
614 |
+
value: 25.505
|
615 |
+
- type: precision_at_1
|
616 |
+
value: 16.454
|
617 |
+
- type: precision_at_10
|
618 |
+
value: 5.252
|
619 |
+
- type: precision_at_100
|
620 |
+
value: 0.8410000000000001
|
621 |
+
- type: precision_at_1000
|
622 |
+
value: 0.105
|
623 |
+
- type: precision_at_3
|
624 |
+
value: 10.428999999999998
|
625 |
+
- type: precision_at_5
|
626 |
+
value: 8.019
|
627 |
+
- type: recall_at_1
|
628 |
+
value: 14.417
|
629 |
+
- type: recall_at_10
|
630 |
+
value: 44.025
|
631 |
+
- type: recall_at_100
|
632 |
+
value: 69.404
|
633 |
+
- type: recall_at_1000
|
634 |
+
value: 86.18900000000001
|
635 |
+
- type: recall_at_3
|
636 |
+
value: 26.972
|
637 |
+
- type: recall_at_5
|
638 |
+
value: 34.132
|
639 |
+
- task:
|
640 |
+
type: Classification
|
641 |
+
dataset:
|
642 |
+
type: laugustyniak/abusive-clauses-pl
|
643 |
+
name: MTEB PAC
|
644 |
+
config: default
|
645 |
+
split: test
|
646 |
+
revision: None
|
647 |
+
metrics:
|
648 |
+
- type: accuracy
|
649 |
+
value: 66.55082536924412
|
650 |
+
- type: ap
|
651 |
+
value: 76.44962281293184
|
652 |
+
- type: f1
|
653 |
+
value: 63.899803692180434
|
654 |
+
- task:
|
655 |
+
type: PairClassification
|
656 |
+
dataset:
|
657 |
+
type: PL-MTEB/ppc-pairclassification
|
658 |
+
name: MTEB PPC
|
659 |
+
config: default
|
660 |
+
split: test
|
661 |
+
revision: None
|
662 |
+
metrics:
|
663 |
+
- type: cos_sim_accuracy
|
664 |
+
value: 86.5
|
665 |
+
- type: cos_sim_ap
|
666 |
+
value: 92.65086645409387
|
667 |
+
- type: cos_sim_f1
|
668 |
+
value: 89.39157566302653
|
669 |
+
- type: cos_sim_precision
|
670 |
+
value: 84.51327433628319
|
671 |
+
- type: cos_sim_recall
|
672 |
+
value: 94.86754966887418
|
673 |
+
- type: dot_accuracy
|
674 |
+
value: 86.5
|
675 |
+
- type: dot_ap
|
676 |
+
value: 92.65086645409387
|
677 |
+
- type: dot_f1
|
678 |
+
value: 89.39157566302653
|
679 |
+
- type: dot_precision
|
680 |
+
value: 84.51327433628319
|
681 |
+
- type: dot_recall
|
682 |
+
value: 94.86754966887418
|
683 |
+
- type: euclidean_accuracy
|
684 |
+
value: 86.5
|
685 |
+
- type: euclidean_ap
|
686 |
+
value: 92.65086645409387
|
687 |
+
- type: euclidean_f1
|
688 |
+
value: 89.39157566302653
|
689 |
+
- type: euclidean_precision
|
690 |
+
value: 84.51327433628319
|
691 |
+
- type: euclidean_recall
|
692 |
+
value: 94.86754966887418
|
693 |
+
- type: manhattan_accuracy
|
694 |
+
value: 86.5
|
695 |
+
- type: manhattan_ap
|
696 |
+
value: 92.64975544736456
|
697 |
+
- type: manhattan_f1
|
698 |
+
value: 89.33852140077822
|
699 |
+
- type: manhattan_precision
|
700 |
+
value: 84.28781204111601
|
701 |
+
- type: manhattan_recall
|
702 |
+
value: 95.03311258278146
|
703 |
+
- type: max_accuracy
|
704 |
+
value: 86.5
|
705 |
+
- type: max_ap
|
706 |
+
value: 92.65086645409387
|
707 |
+
- type: max_f1
|
708 |
+
value: 89.39157566302653
|
709 |
+
- task:
|
710 |
+
type: PairClassification
|
711 |
+
dataset:
|
712 |
+
type: PL-MTEB/psc-pairclassification
|
713 |
+
name: MTEB PSC
|
714 |
+
config: default
|
715 |
+
split: test
|
716 |
+
revision: None
|
717 |
+
metrics:
|
718 |
+
- type: cos_sim_accuracy
|
719 |
+
value: 95.64007421150278
|
720 |
+
- type: cos_sim_ap
|
721 |
+
value: 98.42114841894346
|
722 |
+
- type: cos_sim_f1
|
723 |
+
value: 92.8895612708018
|
724 |
+
- type: cos_sim_precision
|
725 |
+
value: 92.1921921921922
|
726 |
+
- type: cos_sim_recall
|
727 |
+
value: 93.59756097560977
|
728 |
+
- type: dot_accuracy
|
729 |
+
value: 95.64007421150278
|
730 |
+
- type: dot_ap
|
731 |
+
value: 98.42114841894346
|
732 |
+
- type: dot_f1
|
733 |
+
value: 92.8895612708018
|
734 |
+
- type: dot_precision
|
735 |
+
value: 92.1921921921922
|
736 |
+
- type: dot_recall
|
737 |
+
value: 93.59756097560977
|
738 |
+
- type: euclidean_accuracy
|
739 |
+
value: 95.64007421150278
|
740 |
+
- type: euclidean_ap
|
741 |
+
value: 98.42114841894346
|
742 |
+
- type: euclidean_f1
|
743 |
+
value: 92.8895612708018
|
744 |
+
- type: euclidean_precision
|
745 |
+
value: 92.1921921921922
|
746 |
+
- type: euclidean_recall
|
747 |
+
value: 93.59756097560977
|
748 |
+
- type: manhattan_accuracy
|
749 |
+
value: 95.82560296846012
|
750 |
+
- type: manhattan_ap
|
751 |
+
value: 98.38712415914046
|
752 |
+
- type: manhattan_f1
|
753 |
+
value: 93.19213313161876
|
754 |
+
- type: manhattan_precision
|
755 |
+
value: 92.49249249249249
|
756 |
+
- type: manhattan_recall
|
757 |
+
value: 93.90243902439023
|
758 |
+
- type: max_accuracy
|
759 |
+
value: 95.82560296846012
|
760 |
+
- type: max_ap
|
761 |
+
value: 98.42114841894346
|
762 |
+
- type: max_f1
|
763 |
+
value: 93.19213313161876
|
764 |
+
- task:
|
765 |
+
type: Classification
|
766 |
+
dataset:
|
767 |
+
type: PL-MTEB/polemo2_in
|
768 |
+
name: MTEB PolEmo2.0-IN
|
769 |
+
config: default
|
770 |
+
split: test
|
771 |
+
revision: None
|
772 |
+
metrics:
|
773 |
+
- type: accuracy
|
774 |
+
value: 68.40720221606648
|
775 |
+
- type: f1
|
776 |
+
value: 67.09084289613526
|
777 |
+
- task:
|
778 |
+
type: Classification
|
779 |
+
dataset:
|
780 |
+
type: PL-MTEB/polemo2_out
|
781 |
+
name: MTEB PolEmo2.0-OUT
|
782 |
+
config: default
|
783 |
+
split: test
|
784 |
+
revision: None
|
785 |
+
metrics:
|
786 |
+
- type: accuracy
|
787 |
+
value: 38.056680161943326
|
788 |
+
- type: f1
|
789 |
+
value: 32.87731504372395
|
790 |
+
- task:
|
791 |
+
type: Retrieval
|
792 |
+
dataset:
|
793 |
+
type: quora-pl
|
794 |
+
name: MTEB Quora-PL
|
795 |
+
config: default
|
796 |
+
split: test
|
797 |
+
revision: None
|
798 |
+
metrics:
|
799 |
+
- type: map_at_1
|
800 |
+
value: 65.422
|
801 |
+
- type: map_at_10
|
802 |
+
value: 79.259
|
803 |
+
- type: map_at_100
|
804 |
+
value: 80.0
|
805 |
+
- type: map_at_1000
|
806 |
+
value: 80.021
|
807 |
+
- type: map_at_3
|
808 |
+
value: 76.16199999999999
|
809 |
+
- type: map_at_5
|
810 |
+
value: 78.03999999999999
|
811 |
+
- type: mrr_at_1
|
812 |
+
value: 75.26
|
813 |
+
- type: mrr_at_10
|
814 |
+
value: 82.39699999999999
|
815 |
+
- type: mrr_at_100
|
816 |
+
value: 82.589
|
817 |
+
- type: mrr_at_1000
|
818 |
+
value: 82.593
|
819 |
+
- type: mrr_at_3
|
820 |
+
value: 81.08999999999999
|
821 |
+
- type: mrr_at_5
|
822 |
+
value: 81.952
|
823 |
+
- type: ndcg_at_1
|
824 |
+
value: 75.3
|
825 |
+
- type: ndcg_at_10
|
826 |
+
value: 83.588
|
827 |
+
- type: ndcg_at_100
|
828 |
+
value: 85.312
|
829 |
+
- type: ndcg_at_1000
|
830 |
+
value: 85.536
|
831 |
+
- type: ndcg_at_3
|
832 |
+
value: 80.128
|
833 |
+
- type: ndcg_at_5
|
834 |
+
value: 81.962
|
835 |
+
- type: precision_at_1
|
836 |
+
value: 75.3
|
837 |
+
- type: precision_at_10
|
838 |
+
value: 12.856000000000002
|
839 |
+
- type: precision_at_100
|
840 |
+
value: 1.508
|
841 |
+
- type: precision_at_1000
|
842 |
+
value: 0.156
|
843 |
+
- type: precision_at_3
|
844 |
+
value: 35.207
|
845 |
+
- type: precision_at_5
|
846 |
+
value: 23.316
|
847 |
+
- type: recall_at_1
|
848 |
+
value: 65.422
|
849 |
+
- type: recall_at_10
|
850 |
+
value: 92.381
|
851 |
+
- type: recall_at_100
|
852 |
+
value: 98.575
|
853 |
+
- type: recall_at_1000
|
854 |
+
value: 99.85300000000001
|
855 |
+
- type: recall_at_3
|
856 |
+
value: 82.59100000000001
|
857 |
+
- type: recall_at_5
|
858 |
+
value: 87.629
|
859 |
+
- task:
|
860 |
+
type: Retrieval
|
861 |
+
dataset:
|
862 |
+
type: scidocs-pl
|
863 |
+
name: MTEB SCIDOCS-PL
|
864 |
+
config: default
|
865 |
+
split: test
|
866 |
+
revision: None
|
867 |
+
metrics:
|
868 |
+
- type: map_at_1
|
869 |
+
value: 2.52
|
870 |
+
- type: map_at_10
|
871 |
+
value: 6.814000000000001
|
872 |
+
- type: map_at_100
|
873 |
+
value: 8.267
|
874 |
+
- type: map_at_1000
|
875 |
+
value: 8.565000000000001
|
876 |
+
- type: map_at_3
|
877 |
+
value: 4.736
|
878 |
+
- type: map_at_5
|
879 |
+
value: 5.653
|
880 |
+
- type: mrr_at_1
|
881 |
+
value: 12.5
|
882 |
+
- type: mrr_at_10
|
883 |
+
value: 20.794999999999998
|
884 |
+
- type: mrr_at_100
|
885 |
+
value: 22.014
|
886 |
+
- type: mrr_at_1000
|
887 |
+
value: 22.109
|
888 |
+
- type: mrr_at_3
|
889 |
+
value: 17.8
|
890 |
+
- type: mrr_at_5
|
891 |
+
value: 19.42
|
892 |
+
- type: ndcg_at_1
|
893 |
+
value: 12.5
|
894 |
+
- type: ndcg_at_10
|
895 |
+
value: 12.209
|
896 |
+
- type: ndcg_at_100
|
897 |
+
value: 18.812
|
898 |
+
- type: ndcg_at_1000
|
899 |
+
value: 24.766
|
900 |
+
- type: ndcg_at_3
|
901 |
+
value: 10.847
|
902 |
+
- type: ndcg_at_5
|
903 |
+
value: 9.632
|
904 |
+
- type: precision_at_1
|
905 |
+
value: 12.5
|
906 |
+
- type: precision_at_10
|
907 |
+
value: 6.660000000000001
|
908 |
+
- type: precision_at_100
|
909 |
+
value: 1.6340000000000001
|
910 |
+
- type: precision_at_1000
|
911 |
+
value: 0.307
|
912 |
+
- type: precision_at_3
|
913 |
+
value: 10.299999999999999
|
914 |
+
- type: precision_at_5
|
915 |
+
value: 8.66
|
916 |
+
- type: recall_at_1
|
917 |
+
value: 2.52
|
918 |
+
- type: recall_at_10
|
919 |
+
value: 13.495
|
920 |
+
- type: recall_at_100
|
921 |
+
value: 33.188
|
922 |
+
- type: recall_at_1000
|
923 |
+
value: 62.34499999999999
|
924 |
+
- type: recall_at_3
|
925 |
+
value: 6.245
|
926 |
+
- type: recall_at_5
|
927 |
+
value: 8.76
|
928 |
+
- task:
|
929 |
+
type: PairClassification
|
930 |
+
dataset:
|
931 |
+
type: PL-MTEB/sicke-pl-pairclassification
|
932 |
+
name: MTEB SICK-E-PL
|
933 |
+
config: default
|
934 |
+
split: test
|
935 |
+
revision: None
|
936 |
+
metrics:
|
937 |
+
- type: cos_sim_accuracy
|
938 |
+
value: 86.13942111699959
|
939 |
+
- type: cos_sim_ap
|
940 |
+
value: 81.47480017120256
|
941 |
+
- type: cos_sim_f1
|
942 |
+
value: 74.79794268919912
|
943 |
+
- type: cos_sim_precision
|
944 |
+
value: 77.2382397572079
|
945 |
+
- type: cos_sim_recall
|
946 |
+
value: 72.50712250712252
|
947 |
+
- type: dot_accuracy
|
948 |
+
value: 86.13942111699959
|
949 |
+
- type: dot_ap
|
950 |
+
value: 81.47478531367476
|
951 |
+
- type: dot_f1
|
952 |
+
value: 74.79794268919912
|
953 |
+
- type: dot_precision
|
954 |
+
value: 77.2382397572079
|
955 |
+
- type: dot_recall
|
956 |
+
value: 72.50712250712252
|
957 |
+
- type: euclidean_accuracy
|
958 |
+
value: 86.13942111699959
|
959 |
+
- type: euclidean_ap
|
960 |
+
value: 81.47478531367476
|
961 |
+
- type: euclidean_f1
|
962 |
+
value: 74.79794268919912
|
963 |
+
- type: euclidean_precision
|
964 |
+
value: 77.2382397572079
|
965 |
+
- type: euclidean_recall
|
966 |
+
value: 72.50712250712252
|
967 |
+
- type: manhattan_accuracy
|
968 |
+
value: 86.15980432123929
|
969 |
+
- type: manhattan_ap
|
970 |
+
value: 81.40798042612397
|
971 |
+
- type: manhattan_f1
|
972 |
+
value: 74.86116253239543
|
973 |
+
- type: manhattan_precision
|
974 |
+
value: 77.9491133384734
|
975 |
+
- type: manhattan_recall
|
976 |
+
value: 72.00854700854701
|
977 |
+
- type: max_accuracy
|
978 |
+
value: 86.15980432123929
|
979 |
+
- type: max_ap
|
980 |
+
value: 81.47480017120256
|
981 |
+
- type: max_f1
|
982 |
+
value: 74.86116253239543
|
983 |
+
- task:
|
984 |
+
type: STS
|
985 |
+
dataset:
|
986 |
+
type: PL-MTEB/sickr-pl-sts
|
987 |
+
name: MTEB SICK-R-PL
|
988 |
+
config: default
|
989 |
+
split: test
|
990 |
+
revision: None
|
991 |
+
metrics:
|
992 |
+
- type: cos_sim_pearson
|
993 |
+
value: 84.27525342551935
|
994 |
+
- type: cos_sim_spearman
|
995 |
+
value: 79.50631730805885
|
996 |
+
- type: euclidean_pearson
|
997 |
+
value: 82.07169123942028
|
998 |
+
- type: euclidean_spearman
|
999 |
+
value: 79.50631887406465
|
1000 |
+
- type: manhattan_pearson
|
1001 |
+
value: 81.98288826317463
|
1002 |
+
- type: manhattan_spearman
|
1003 |
+
value: 79.4244081650332
|
1004 |
+
- task:
|
1005 |
+
type: STS
|
1006 |
+
dataset:
|
1007 |
+
type: mteb/sts22-crosslingual-sts
|
1008 |
+
name: MTEB STS22 (pl)
|
1009 |
+
config: pl
|
1010 |
+
split: test
|
1011 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
1012 |
+
metrics:
|
1013 |
+
- type: cos_sim_pearson
|
1014 |
+
value: 35.59400236598834
|
1015 |
+
- type: cos_sim_spearman
|
1016 |
+
value: 36.782560207852846
|
1017 |
+
- type: euclidean_pearson
|
1018 |
+
value: 28.546177668542942
|
1019 |
+
- type: euclidean_spearman
|
1020 |
+
value: 36.68394223635756
|
1021 |
+
- type: manhattan_pearson
|
1022 |
+
value: 28.45606963909248
|
1023 |
+
- type: manhattan_spearman
|
1024 |
+
value: 36.475975118547524
|
1025 |
+
- task:
|
1026 |
+
type: Retrieval
|
1027 |
+
dataset:
|
1028 |
+
type: scifact-pl
|
1029 |
+
name: MTEB SciFact-PL
|
1030 |
+
config: default
|
1031 |
+
split: test
|
1032 |
+
revision: None
|
1033 |
+
metrics:
|
1034 |
+
- type: map_at_1
|
1035 |
+
value: 41.028
|
1036 |
+
- type: map_at_10
|
1037 |
+
value: 52.23799999999999
|
1038 |
+
- type: map_at_100
|
1039 |
+
value: 52.905
|
1040 |
+
- type: map_at_1000
|
1041 |
+
value: 52.945
|
1042 |
+
- type: map_at_3
|
1043 |
+
value: 49.102000000000004
|
1044 |
+
- type: map_at_5
|
1045 |
+
value: 50.992000000000004
|
1046 |
+
- type: mrr_at_1
|
1047 |
+
value: 43.333
|
1048 |
+
- type: mrr_at_10
|
1049 |
+
value: 53.551
|
1050 |
+
- type: mrr_at_100
|
1051 |
+
value: 54.138
|
1052 |
+
- type: mrr_at_1000
|
1053 |
+
value: 54.175
|
1054 |
+
- type: mrr_at_3
|
1055 |
+
value: 51.056000000000004
|
1056 |
+
- type: mrr_at_5
|
1057 |
+
value: 52.705999999999996
|
1058 |
+
- type: ndcg_at_1
|
1059 |
+
value: 43.333
|
1060 |
+
- type: ndcg_at_10
|
1061 |
+
value: 57.731
|
1062 |
+
- type: ndcg_at_100
|
1063 |
+
value: 61.18599999999999
|
1064 |
+
- type: ndcg_at_1000
|
1065 |
+
value: 62.261
|
1066 |
+
- type: ndcg_at_3
|
1067 |
+
value: 52.276999999999994
|
1068 |
+
- type: ndcg_at_5
|
1069 |
+
value: 55.245999999999995
|
1070 |
+
- type: precision_at_1
|
1071 |
+
value: 43.333
|
1072 |
+
- type: precision_at_10
|
1073 |
+
value: 8.267
|
1074 |
+
- type: precision_at_100
|
1075 |
+
value: 1.02
|
1076 |
+
- type: precision_at_1000
|
1077 |
+
value: 0.11100000000000002
|
1078 |
+
- type: precision_at_3
|
1079 |
+
value: 21.444
|
1080 |
+
- type: precision_at_5
|
1081 |
+
value: 14.533
|
1082 |
+
- type: recall_at_1
|
1083 |
+
value: 41.028
|
1084 |
+
- type: recall_at_10
|
1085 |
+
value: 73.111
|
1086 |
+
- type: recall_at_100
|
1087 |
+
value: 89.533
|
1088 |
+
- type: recall_at_1000
|
1089 |
+
value: 98.0
|
1090 |
+
- type: recall_at_3
|
1091 |
+
value: 58.744
|
1092 |
+
- type: recall_at_5
|
1093 |
+
value: 66.106
|
1094 |
+
- task:
|
1095 |
+
type: Retrieval
|
1096 |
+
dataset:
|
1097 |
+
type: trec-covid-pl
|
1098 |
+
name: MTEB TRECCOVID-PL
|
1099 |
+
config: default
|
1100 |
+
split: test
|
1101 |
+
revision: None
|
1102 |
+
metrics:
|
1103 |
+
- type: map_at_1
|
1104 |
+
value: 0.146
|
1105 |
+
- type: map_at_10
|
1106 |
+
value: 1.09
|
1107 |
+
- type: map_at_100
|
1108 |
+
value: 6.002
|
1109 |
+
- type: map_at_1000
|
1110 |
+
value: 15.479999999999999
|
1111 |
+
- type: map_at_3
|
1112 |
+
value: 0.41000000000000003
|
1113 |
+
- type: map_at_5
|
1114 |
+
value: 0.596
|
1115 |
+
- type: mrr_at_1
|
1116 |
+
value: 54.0
|
1117 |
+
- type: mrr_at_10
|
1118 |
+
value: 72.367
|
1119 |
+
- type: mrr_at_100
|
1120 |
+
value: 72.367
|
1121 |
+
- type: mrr_at_1000
|
1122 |
+
value: 72.367
|
1123 |
+
- type: mrr_at_3
|
1124 |
+
value: 70.333
|
1125 |
+
- type: mrr_at_5
|
1126 |
+
value: 72.033
|
1127 |
+
- type: ndcg_at_1
|
1128 |
+
value: 48.0
|
1129 |
+
- type: ndcg_at_10
|
1130 |
+
value: 48.827
|
1131 |
+
- type: ndcg_at_100
|
1132 |
+
value: 38.513999999999996
|
1133 |
+
- type: ndcg_at_1000
|
1134 |
+
value: 37.958
|
1135 |
+
- type: ndcg_at_3
|
1136 |
+
value: 52.614000000000004
|
1137 |
+
- type: ndcg_at_5
|
1138 |
+
value: 51.013
|
1139 |
+
- type: precision_at_1
|
1140 |
+
value: 54.0
|
1141 |
+
- type: precision_at_10
|
1142 |
+
value: 53.6
|
1143 |
+
- type: precision_at_100
|
1144 |
+
value: 40.300000000000004
|
1145 |
+
- type: precision_at_1000
|
1146 |
+
value: 17.276
|
1147 |
+
- type: precision_at_3
|
1148 |
+
value: 57.333
|
1149 |
+
- type: precision_at_5
|
1150 |
+
value: 55.60000000000001
|
1151 |
+
- type: recall_at_1
|
1152 |
+
value: 0.146
|
1153 |
+
- type: recall_at_10
|
1154 |
+
value: 1.438
|
1155 |
+
- type: recall_at_100
|
1156 |
+
value: 9.673
|
1157 |
+
- type: recall_at_1000
|
1158 |
+
value: 36.870999999999995
|
1159 |
+
- type: recall_at_3
|
1160 |
+
value: 0.47400000000000003
|
1161 |
+
- type: recall_at_5
|
1162 |
+
value: 0.721
|
1163 |
+
---
|
1164 |
+
# Model Card for st-polish-kartonberta-base-alpha-v1
|
1165 |
+
|
1166 |
+
This sentence transformer model is designed to convert text content into a 768-float vector space, ensuring an effective representation. It aims to be proficient in tasks involving sentence / document similarity.
|
1167 |
+
|
1168 |
+
The model has been released in its alpha version. Numerous potential enhancements could boost its performance, such as adjusting training hyperparameters or extending the training duration (currently limited to only one epoch). The main reason is limited GPU.
|
1169 |
+
|
1170 |
+
|
1171 |
+
## Model Description
|
1172 |
+
|
1173 |
+
|
1174 |
+
- **Developed by:** Bartłomiej Orlik (orlik.bartlomiej@gmail.com)
|
1175 |
+
- **Model type:** RoBERTa Sentence Transformer
|
1176 |
+
- **Language:** Polish
|
1177 |
+
- **License:** LGPL-3.0
|
1178 |
+
- **Trained from model:** sdadas/polish-roberta-base-v2: https://huggingface.co/sdadas/polish-roberta-base-v2
|
1179 |
+
|
1180 |
+
|
1181 |
+
|
1182 |
+
|
1183 |
+
|
1184 |
+
|
1185 |
+
## How to Get Started with the Model
|
1186 |
+
|
1187 |
+
Use the code below to get started with the model.
|
1188 |
+
|
1189 |
+
### Using Sentence-Transformers
|
1190 |
+
|
1191 |
+
You can use the model with [sentence-transformers](https://www.SBERT.net):
|
1192 |
+
|
1193 |
+
```
|
1194 |
+
pip install -U sentence-transformers
|
1195 |
+
```
|
1196 |
+
```python
|
1197 |
+
from sentence_transformers import SentenceTransformer
|
1198 |
+
|
1199 |
+
model = SentenceTransformer('FajnyKarton/st-polish-kartonberta-base-alpha-v1')
|
1200 |
+
|
1201 |
+
text_1 = 'Jestem wielkim fanem opakowań tekturowych'
|
1202 |
+
text_2 = 'Bardzo podobają mi się kartony'
|
1203 |
+
|
1204 |
+
embeddings_1 = model.encode(text_1, normalize_embeddings=True)
|
1205 |
+
embeddings_2 = model.encode(text_2, normalize_embeddings=True)
|
1206 |
+
|
1207 |
+
similarity = embeddings_1 @ embeddings_2.T
|
1208 |
+
print(similarity)
|
1209 |
+
```
|
1210 |
+
|
1211 |
+
### Using HuggingFace Transformers
|
1212 |
+
|
1213 |
+
|
1214 |
+
```python
|
1215 |
+
from transformers import AutoTokenizer, AutoModel
|
1216 |
+
import torch
|
1217 |
+
import numpy as np
|
1218 |
+
|
1219 |
+
def encode_text(text):
|
1220 |
+
encoded_input = tokenizer(text, padding=True, truncation=True, return_tensors='pt', max_length=512)
|
1221 |
+
with torch.no_grad():
|
1222 |
+
model_output = model(**encoded_input)
|
1223 |
+
sentence_embeddings = model_output[0][:, 0]
|
1224 |
+
sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
|
1225 |
+
return sentence_embeddings.squeeze().numpy()
|
1226 |
+
|
1227 |
+
cosine_similarity = lambda a, b: np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
|
1228 |
+
|
1229 |
+
|
1230 |
+
tokenizer = AutoTokenizer.from_pretrained('FajnyKarton/st-polish-kartonberta-base-alpha-v1')
|
1231 |
+
model = AutoModel.from_pretrained('FajnyKarton/st-polish-kartonberta-base-alpha-v1')
|
1232 |
+
model.eval()
|
1233 |
+
|
1234 |
+
text_1 = 'Jestem wielkim fanem opakowań tekturowych'
|
1235 |
+
text_2 = 'Bardzo podobają mi się kartony'
|
1236 |
+
|
1237 |
+
embeddings_1 = encode_text(text_1)
|
1238 |
+
embeddings_2 = encode_text(text_2)
|
1239 |
+
|
1240 |
+
print(cosine_similarity(embeddings_1, embeddings_2))
|
1241 |
+
```
|
1242 |
+
*Note: You can use the encode_text function for demonstration purposes. For the best experience, it's recommended to process text in batches.
|
1243 |
+
|
1244 |
+
|
1245 |
+
|
1246 |
+
|
1247 |
+
## Evaluation
|
1248 |
+
#### [MTEB for Polish Language](https://huggingface.co/spaces/mteb/leaderboard)
|
1249 |
+
|
1250 |
+
| Rank | Model | Model Size (GB) | Embedding Dimensions | Sequence Length | Average (26 datasets) | Classification Average (7 datasets) | Clustering Average (1 datasets) | Pair Classification Average (4 datasets) | Retrieval Average (11 datasets) | STS Average (3 datasets) |
|
1251 |
+
|-------:|:----------------------------------------|------------------:|-----------------------:|------------------:|------------------------:|--------------------------------------:|--------------------------------:|-----------------------------------------:|----------------------------------:|-------------------------:|
|
1252 |
+
| 1 | multilingual-e5-large | 2.24 | 1024 | 514 | 58.25 | 60.51 | 24.06 | 84.58 | 47.82 | 67.52 |
|
1253 |
+
| 2 | **st-polish-kartonberta-base-alpha-v1** | 0.5 | 768 | 514 | 56.92 | 60.44 | **32.85** | **87.92** | 42.19 | **69.47** |
|
1254 |
+
| 3 | multilingual-e5-base | 1.11 | 768 | 514 | 54.18 | 57.01 | 18.62 | 82.08 | 42.5 | 65.07 |
|
1255 |
+
| 4 | multilingual-e5-small | 0.47 | 384 | 512 | 53.15 | 54.35 | 19.64 | 81.67 | 41.52 | 66.08 |
|
1256 |
+
| 5 | st-polish-paraphrase-from-mpnet | 0.5 | 768 | 514 | 53.06 | 57.49 | 25.09 | 87.04 | 36.53 | 67.39 |
|
1257 |
+
| 6 | st-polish-paraphrase-from-distilroberta | 0.5 | 768 | 514 | 52.65 | 58.55 | 31.11 | 87 | 33.96 | 68.78 |
|
1258 |
+
|
1259 |
+
|
1260 |
+
|
1261 |
+
|
1262 |
+
|
1263 |
+
|
1264 |
+
|
1265 |
+
## More Information
|
1266 |
+
|
1267 |
+
I developed this model as a personal scientific initiative.
|
1268 |
+
|
1269 |
+
I plan to start the development on a new ST model. However, due to limited computational resources, I suspended further work to create a larger or enhanced version of current model.
|
1270 |
+
|
1271 |
+
|
1272 |
+
|
1273 |
+
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "st-polish-kartonberta-base-alpha-v1",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"max_position_embeddings": 514,
|
18 |
+
"model_type": "roberta",
|
19 |
+
"num_attention_heads": 12,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.30.2",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 50001
|
28 |
+
}
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a20d0ce46850300c03679076fd597e0204fbbe94dcf1fee096353e62ac63eca4
|
3 |
+
size 497842733
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"bos_token": "<s>",
|
4 |
+
"clean_up_tokenization_spaces": true,
|
5 |
+
"cls_token": "<s>",
|
6 |
+
"eos_token": "</s>",
|
7 |
+
"errors": "replace",
|
8 |
+
"mask_token": "<mask>",
|
9 |
+
"model_max_length": 1000000000000000019884624838656,
|
10 |
+
"pad_token": "<pad>",
|
11 |
+
"sep_token": "</s>",
|
12 |
+
"tokenizer_class": "RobertaTokenizer",
|
13 |
+
"trim_offsets": true,
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|