|
import torch |
|
import numpy as np |
|
from diffusers import ControlNetModel, StableDiffusionControlNetPipeline, UniPCMultistepScheduler |
|
from PIL import Image |
|
import base64 |
|
from io import BytesIO |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
if device.type != 'cuda': |
|
raise ValueError("need to run on GPU") |
|
|
|
class EndpointHandler: |
|
def __init__(self, path="lllyasviel/control_v11p_sd15_inpaint"): |
|
self.controlnet = ControlNetModel.from_pretrained(path, torch_dtype=torch.float32).to(device) |
|
self.pipe = StableDiffusionControlNetPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", |
|
controlnet=self.controlnet, |
|
torch_dtype=torch.float32 |
|
).to(device) |
|
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) |
|
self.generator = torch.Generator(device=device) |
|
|
|
def __call__(self, data): |
|
|
|
original_image = decode_image(data["image"]) |
|
mask_image = decode_image(data["mask_image"]) |
|
|
|
num_inference_steps = data.pop("num_inference_steps", 30) |
|
guidance_scale = data.pop("guidance_scale", 7.5) |
|
negative_prompt = data.pop("negative_prompt", None) |
|
controlnet_conditioning_scale = data.pop("controlnet_conditioning_scale", 1.0) |
|
|
|
height = data.pop("height", None) |
|
width = data.pop("width", None) |
|
|
|
|
|
control_image = self.make_inpaint_condition(original_image, mask_image) |
|
|
|
|
|
output_image = self.pipe( |
|
data["inputs"], |
|
negative_prompt=negative_prompt, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
num_images_per_prompt=1, |
|
generator=self.generator, |
|
image=control_image, |
|
height=height, |
|
width=width, |
|
controlnet_conditioning_scale=controlnet_conditioning_scale, |
|
).images[0] |
|
|
|
|
|
output_bytes = save_image_to_bytes(output_image) |
|
|
|
return output_bytes |
|
|
|
def make_inpaint_condition(self, image, mask): |
|
image = np.array(image.convert("RGB")).astype(np.float32) / 255.0 |
|
mask = np.array(mask.convert("L")) |
|
assert image.shape[0:1] == mask.shape[0:1], "image and image_mask must have the same image size" |
|
image[mask < 128] = -1.0 |
|
image = np.expand_dims(image, 0).transpose(0, 3, 1, 2) |
|
image = torch.from_numpy(image).to(device) |
|
return image |
|
|
|
|
|
def decode_image(encoded_image): |
|
image_bytes = base64.b64decode(encoded_image) |
|
image = Image.open(BytesIO(image_bytes)) |
|
return image |
|
|
|
|
|
def save_image_to_bytes(image): |
|
output_bytes = BytesIO() |
|
image.save(output_bytes, format="PNG") |
|
output_bytes.seek(0) |
|
return output_bytes.getvalue() |