|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import annotations |
|
|
import argparse, json, math, pathlib, random, time, os, sys |
|
|
from contextlib import nullcontext |
|
|
from typing import Dict, Any, List, Optional, Tuple |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
from datasets import load_dataset, DownloadConfig |
|
|
from transformers import AutoTokenizer, logging as hf_log |
|
|
from tqdm.auto import tqdm |
|
|
|
|
|
|
|
|
class Colors: |
|
|
RESET = "\033[0m" |
|
|
BOLD = "\033[1m" |
|
|
DIM = "\033[2m" |
|
|
|
|
|
RED = "\033[31m" |
|
|
GREEN = "\033[32m" |
|
|
YELLOW = "\033[33m" |
|
|
BLUE = "\033[34m" |
|
|
MAGENTA = "\033[35m" |
|
|
CYAN = "\033[36m" |
|
|
WHITE = "\033[37m" |
|
|
|
|
|
BRIGHT_GREEN = "\033[92m" |
|
|
BRIGHT_CYAN = "\033[96m" |
|
|
BRIGHT_YELLOW = "\033[93m" |
|
|
|
|
|
PROMPT = "\033[36m" |
|
|
GENERATED = "\033[0m" |
|
|
|
|
|
|
|
|
hf_log.set_verbosity_error() |
|
|
DEV = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
|
try: |
|
|
torch.set_float32_matmul_precision("high") |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
|
|
|
TOKENIZER_ID = os.environ.get("TOKENIZER_ID", "deepseek-ai/DeepSeek-V3.2-Exp") |
|
|
tok = AutoTokenizer.from_pretrained(TOKENIZER_ID, use_fast=True, trust_remote_code=True) |
|
|
if tok.pad_token is None: |
|
|
tok.add_special_tokens({"pad_token": "<|pad|>"}) |
|
|
|
|
|
VOCAB, EOS = ( |
|
|
max(tok.get_vocab().values()) + 1, |
|
|
tok.eos_token_id if tok.eos_token_id is not None else tok.sep_token_id |
|
|
) |
|
|
|
|
|
PRESETS: Dict[str, Dict[str, int]] = { |
|
|
"small": dict(d=512, layers=8, heads=16, rank=64), |
|
|
"smallx2": dict(d=512, layers=16, heads=16, rank=64), |
|
|
"base": dict(d=768, layers=12, heads=24, rank=96), |
|
|
"base18": dict(d=768, layers=18, heads=24, rank=96), |
|
|
"large": dict(d=1024, layers=24, heads=16, rank=128), |
|
|
} |
|
|
|
|
|
|
|
|
DEFAULT_BLOCK = 1122 |
|
|
DEFAULT_BATCH = 4 |
|
|
SAT_BLOCK = 2 |
|
|
LR_CORE, LR_HEAD = 5e-5, 2e-4 |
|
|
EMIT_LAMBDA = 0.1 |
|
|
DEFAULT_SAVE_SEC = 24 * 3600 |
|
|
CKDIR = pathlib.Path("ckpts_joint") |
|
|
|
|
|
|
|
|
DEFAULT_PRETRAIN_SOURCES = "cerebras/SlimPajama-627B" |
|
|
DEFAULT_AFTER_SFT_SOURCES = "mlabonne/opc-sft-stage2-chat,HuggingFaceH4/ultrachat_200k" |
|
|
DEFAULT_AFTER_SFT_BLOCK = 1122 |
|
|
|
|
|
|
|
|
def rng_state(): |
|
|
if DEV.type == "cuda": |
|
|
try: |
|
|
return torch.cuda.get_rng_state(DEV) |
|
|
except TypeError: |
|
|
return torch.cuda.get_rng_state() |
|
|
return torch.get_rng_state() |
|
|
|
|
|
def _is_probably_ckpt(path: pathlib.Path) -> bool: |
|
|
try: |
|
|
return path.is_file() and path.suffix == ".pt" and not path.name.endswith(".pt.tmp") and path.stat().st_size > (1<<20) |
|
|
except Exception: |
|
|
return False |
|
|
|
|
|
def _resolve_ckpt(path: pathlib.Path) -> pathlib.Path | None: |
|
|
try: |
|
|
if path.is_dir(): |
|
|
cands = sorted([p for p in path.glob("*.pt") if _is_probably_ckpt(p)], |
|
|
key=lambda p: p.stat().st_mtime, reverse=True) |
|
|
return cands[0] if cands else None |
|
|
if path.suffix == ".tmp": |
|
|
solid = path.with_suffix("") |
|
|
return solid if _is_probably_ckpt(solid) else _resolve_ckpt(path.parent) |
|
|
return path if _is_probably_ckpt(path) else _resolve_ckpt(path.parent) |
|
|
except Exception: |
|
|
return None |
|
|
|
|
|
def _try_load(path: pathlib.Path, map_location="cpu"): |
|
|
try: |
|
|
return torch.load(path, map_location="cpu") |
|
|
except Exception as e: |
|
|
print(f"[ckpt-skip] {path} not usable: {e}") |
|
|
return None |
|
|
|
|
|
def _prune_checkpoints(save_dir: pathlib.Path, phase_name: str, max_ckpts: int): |
|
|
"""Prune old checkpoints for a specific phase.""" |
|
|
if max_ckpts is None or max_ckpts <= 0: |
|
|
return |
|
|
try: |
|
|
pattern = f"{phase_name}_step*.pt" |
|
|
ckpts = sorted( |
|
|
[p for p in save_dir.glob(pattern) if _is_probably_ckpt(p)], |
|
|
key=lambda p: p.stat().st_mtime |
|
|
) |
|
|
excess = len(ckpts) - max_ckpts |
|
|
if excess > 0: |
|
|
for p in ckpts[:excess]: |
|
|
try: |
|
|
p.unlink() |
|
|
print(f" [prune] deleted old {p.name}") |
|
|
except Exception: |
|
|
pass |
|
|
except Exception as e: |
|
|
print(f"[ckpt-prune] error: {e}") |
|
|
|
|
|
|
|
|
try: |
|
|
from torch.amp import autocast as _ac, GradScaler |
|
|
except ImportError: |
|
|
from torch.cuda.amp import autocast as _ac, GradScaler |
|
|
|
|
|
def _auto_amp_dtype(): |
|
|
if DEV.type == "cuda": |
|
|
try: |
|
|
if torch.cuda.is_bf16_supported(): return torch.bfloat16 |
|
|
return torch.float16 |
|
|
except Exception: return torch.float16 |
|
|
return torch.float32 |
|
|
|
|
|
def amp(enabled: bool): |
|
|
return nullcontext() if not (enabled and DEV.type == "cuda") else _ac(device_type="cuda", dtype=_auto_amp_dtype()) |
|
|
|
|
|
|
|
|
def _coerce_role(r: str) -> str: |
|
|
r = (r or "").lower() |
|
|
if r in {"user", "human", "customer"}: return "user" |
|
|
if r in {"assistant", "gpt", "bot"}: return "assistant" |
|
|
if r in {"system", "context"}: return "system" |
|
|
return r or "user" |
|
|
|
|
|
def _render_chat_text_from_ex(ex: dict, messages_key: str, add_generation_prompt: bool) -> Optional[str]: |
|
|
msgs = ex.get(messages_key) |
|
|
if msgs is None: |
|
|
for alt in ("conversations", "dialog", "turns"): |
|
|
if isinstance(ex.get(alt), list): |
|
|
msgs = ex[alt]; break |
|
|
if isinstance(msgs, list) and msgs and isinstance(msgs[0], dict): |
|
|
try: |
|
|
norm = [] |
|
|
for m in msgs: |
|
|
role = _coerce_role(m.get("role", "")); content = m.get("content", m.get("text", "")) |
|
|
if not isinstance(content, str): continue |
|
|
norm.append({"role": role, "content": content}) |
|
|
if not norm: return None |
|
|
return tok.apply_chat_template(norm, tokenize=False, add_generation_prompt=add_generation_prompt) |
|
|
except Exception: return None |
|
|
|
|
|
for a, b in (("prompt", "response"), ("instruction", "output"), ("question", "answer")): |
|
|
if isinstance(ex.get(a), str) and isinstance(ex.get(b), str): |
|
|
return f"User: {ex[a]}\nAssistant: {ex[b]}" |
|
|
return None |
|
|
|
|
|
def _open_stream_one(ds_name: str, seed: int): |
|
|
dc = DownloadConfig(max_retries=5, use_etag=True, resume_download=True) |
|
|
if ":" in ds_name: base, config = ds_name.split(":", 1) |
|
|
else: base, config = ds_name, None |
|
|
|
|
|
if base == "json": |
|
|
data_files = {"train": config} |
|
|
ds = load_dataset("json", data_files=data_files, split="train", streaming=True, download_config=dc) |
|
|
else: |
|
|
ds = load_dataset(base, config, split="train", streaming=True, download_config=dc) if config else \ |
|
|
load_dataset(base, split="train", streaming=True, download_config=dc) |
|
|
return iter(ds.shuffle(buffer_size=10_000, seed=seed)) |
|
|
|
|
|
def token_stream(ds_names: str, target: int, seed: int = 42, |
|
|
chat: bool = False, chat_messages_key: str = "messages", |
|
|
sft_add_generation_prompt: bool = False, dataset_field_text: str = "text"): |
|
|
sources = [s.strip() for s in ds_names.split(",") if s.strip()] |
|
|
if not sources: return |
|
|
|
|
|
src_idx = 0; emitted = 0; it = None; attempts = 0; backoff_base = 2.0 |
|
|
|
|
|
while emitted < target: |
|
|
try: |
|
|
if it is None: it = _open_stream_one(sources[src_idx], seed) |
|
|
ex = next(it) |
|
|
text = None |
|
|
if isinstance(ex, dict): |
|
|
if chat: |
|
|
text = _render_chat_text_from_ex(ex, chat_messages_key, sft_add_generation_prompt) |
|
|
if text is None: |
|
|
if dataset_field_text and isinstance(ex.get(dataset_field_text), str): |
|
|
text = ex[dataset_field_text] |
|
|
elif isinstance(ex.get("text"), str): |
|
|
text = ex["text"] |
|
|
|
|
|
if not isinstance(text, str): |
|
|
attempts = 0; continue |
|
|
|
|
|
enc = tok.encode(text) |
|
|
if EOS is not None and (len(enc) == 0 or enc[-1] != EOS): |
|
|
enc = enc + [EOS] |
|
|
|
|
|
for t in enc: |
|
|
yield t |
|
|
emitted += 1 |
|
|
if emitted >= target: return |
|
|
attempts = 0 |
|
|
except StopIteration: |
|
|
it = None; src_idx = (src_idx + 1) % len(sources) |
|
|
except Exception as e: |
|
|
attempts += 1 |
|
|
sleep_s = min(60.0, backoff_base ** min(attempts, 6)) |
|
|
print(f"[stream-retry] {sources[src_idx]} error: {type(e).__name__}, sleeping {sleep_s:.1f}s") |
|
|
time.sleep(sleep_s); it = None |
|
|
if attempts % 5 == 0 and len(sources) > 1: |
|
|
src_idx = (src_idx + 1) % len(sources) |
|
|
|
|
|
|
|
|
def _alibi_slopes(n_heads: int): |
|
|
import math |
|
|
def pow2slopes(n): |
|
|
start = 2 ** (-2 ** -(math.log2(n) - 3)) |
|
|
ratio = start |
|
|
return [start * (ratio ** i) for i in range(n)] |
|
|
if math.log2(n_heads).is_integer(): vals = pow2slopes(n_heads) |
|
|
else: |
|
|
closest = 2 ** math.floor(math.log2(n_heads)) |
|
|
vals = pow2slopes(closest) |
|
|
extra = pow2slopes(2 * closest) |
|
|
vals += extra[0::2][: n_heads - closest] |
|
|
return torch.tensor(vals, device=DEV).view(1, n_heads, 1, 1) |
|
|
|
|
|
def alibi_bias(n_heads: int, n_tokens: int): |
|
|
i = torch.arange(n_tokens, device=DEV).view(1, 1, n_tokens, 1) |
|
|
j = torch.arange(n_tokens, device=DEV).view(1, 1, 1, n_tokens) |
|
|
dist = (j - i).clamp_min(0) |
|
|
return -_alibi_slopes(n_heads) * dist |
|
|
|
|
|
|
|
|
class LowRankMHA(nn.Module): |
|
|
def __init__(self, d: int, h: int, r: int, use_relpos: bool = True): |
|
|
super().__init__() |
|
|
assert d % h == 0 |
|
|
self.h, self.dk = h, d // h |
|
|
self.use_relpos = use_relpos |
|
|
self.q = nn.Linear(d, d, bias=False) |
|
|
self.k = nn.Linear(d, d, bias=False) |
|
|
self.v = nn.Linear(d, d, bias=False) |
|
|
self.U = nn.Parameter(torch.randn(self.dk, r)) |
|
|
nn.init.orthogonal_(self.U) |
|
|
self.proj = nn.Linear(h * r, d, bias=False) |
|
|
self.drop = nn.Dropout(0.1) |
|
|
|
|
|
def _proj(self, x): |
|
|
B, N, _ = x.shape |
|
|
return (x.view(B, N, self.h, self.dk).transpose(1, 2) @ self.U) |
|
|
|
|
|
def forward(self, x, mask=None, rel_bias_tokens=None, kv_cache=None, use_cache=False): |
|
|
q = self._proj(self.q(x)) |
|
|
k_new = self._proj(self.k(x)) |
|
|
v_new = self._proj(self.v(x)) |
|
|
|
|
|
if kv_cache is None: k, v = k_new, v_new |
|
|
else: |
|
|
k, v = kv_cache |
|
|
if use_cache: |
|
|
k, v = torch.cat([k, k_new], dim=2), torch.cat([v, v_new], dim=2) |
|
|
|
|
|
att = (q @ k.transpose(-1, -2)) / math.sqrt(self.dk) |
|
|
if q.size(2) == k.size(2): |
|
|
if self.use_relpos and rel_bias_tokens is not None: |
|
|
att = att + alibi_bias(self.h, rel_bias_tokens) |
|
|
if mask is not None: att = att + mask |
|
|
|
|
|
z = (att.softmax(-1) @ v).transpose(1, 2).reshape(x.size(0), x.size(1), -1) |
|
|
out = self.drop(self.proj(z)) |
|
|
return (out, (k, v)) if use_cache else out |
|
|
|
|
|
class Block(nn.Module): |
|
|
def __init__(self, d: int, h: int, r: int): |
|
|
super().__init__() |
|
|
self.ln1, self.ln2 = nn.LayerNorm(d), nn.LayerNorm(d) |
|
|
self.mha = LowRankMHA(d, h, r) |
|
|
self.ff = nn.Sequential(nn.Linear(d, 4 * d), nn.ReLU(), nn.Linear(4 * d, d)) |
|
|
|
|
|
def forward(self, x, mask, kv=None, use_cache=False): |
|
|
n = x.size(1) |
|
|
if use_cache: |
|
|
y, new_kv = self.mha(self.ln1(x), mask, rel_bias_tokens=n if mask is not None else None, kv_cache=kv, use_cache=True) |
|
|
x = x + y + self.ff(self.ln2(x + y)) |
|
|
return x, new_kv |
|
|
else: |
|
|
x = x + self.mha(self.ln1(x), mask, rel_bias_tokens=n) |
|
|
return x + self.ff(self.ln2(x)) |
|
|
|
|
|
class Encoder(nn.Module): |
|
|
def __init__(self, cfg): |
|
|
super().__init__() |
|
|
d, l, h, r = cfg["d"], cfg["layers"], cfg["heads"], cfg["rank"] |
|
|
self.emb = nn.Embedding(VOCAB, d) |
|
|
self.blocks = nn.ModuleList([Block(d, h, r) for _ in range(l)]) |
|
|
self.ln = nn.LayerNorm(d) |
|
|
|
|
|
def forward(self, ids, mask, kv_caches=None, use_cache=False): |
|
|
x = self.emb(ids) |
|
|
if not use_cache: |
|
|
for blk in self.blocks: x = blk(x, mask) |
|
|
return self.ln(x) |
|
|
new_kvs = [] |
|
|
for i, blk in enumerate(self.blocks): |
|
|
kv = kv_caches[i] if kv_caches else None |
|
|
x, kv_out = blk(x, mask, kv, use_cache=True) |
|
|
new_kvs.append(kv_out) |
|
|
return self.ln(x), new_kvs |
|
|
|
|
|
class ARHead(nn.Module): |
|
|
def __init__(self, d): |
|
|
super().__init__() |
|
|
self.proj = nn.Linear(d, VOCAB) |
|
|
def forward(self, h): return self.proj(h) |
|
|
|
|
|
class SATHead(nn.Module): |
|
|
def __init__(self, d, mode="var"): |
|
|
super().__init__() |
|
|
self.proj = nn.Linear(d, VOCAB) |
|
|
self.gate = nn.Linear(d, 2) if mode == "var" else None |
|
|
def forward(self, h_last): |
|
|
return self.proj(h_last), (self.gate(h_last[:, 0]) if self.gate else None) |
|
|
|
|
|
|
|
|
def causal_mask(n): |
|
|
return torch.triu(torch.full((1, 1, n, n), float("-inf"), device=DEV), 1) |
|
|
|
|
|
def sat_mask(n, block=SAT_BLOCK): |
|
|
idx = torch.arange(n, device=DEV) |
|
|
grp = idx.unsqueeze(0) // block |
|
|
allow = (grp.T == grp) | (grp.T > grp) |
|
|
return torch.where(allow, 0.0, float("-inf")).unsqueeze(0).unsqueeze(0) |
|
|
|
|
|
|
|
|
def save_ckpt(path: pathlib.Path, core, ar_h, sat_h, opt, scaler, meta): |
|
|
path.parent.mkdir(exist_ok=True, parents=True) |
|
|
tmp = path.with_suffix(path.suffix + ".tmp") |
|
|
state = { |
|
|
"core": core.state_dict(), "ar": ar_h.state_dict(), "sat": sat_h.state_dict(), |
|
|
"opt": opt.state_dict(), "scaler": scaler.state_dict(), |
|
|
"cfg": meta.get("cfg"), "tokenizer_id": TOKENIZER_ID, |
|
|
**{k: v for k, v in meta.items() if k != "cfg"} |
|
|
} |
|
|
torch.save(state, tmp, _use_new_zipfile_serialization=False) |
|
|
tmp.replace(path) |
|
|
(path.parent / "latest.json").write_text(json.dumps({"path": str(path), "step": meta["step"]})) |
|
|
print(f"\nβ saved checkpoint {path.name}") |
|
|
|
|
|
def load_ckpt(path, core, ar_h, sat_h, opt, scaler): |
|
|
p = _resolve_ckpt(path) or path |
|
|
ck = _try_load(p, map_location="cpu") |
|
|
if ck is None: raise FileNotFoundError(f"No valid checkpoint at {p}") |
|
|
core.load_state_dict(ck["core"]) |
|
|
ar_h.load_state_dict(ck["ar"]) |
|
|
sat_h.load_state_dict(ck["sat"]) |
|
|
opt.load_state_dict(ck["opt"]) |
|
|
scaler.load_state_dict(ck["scaler"]) |
|
|
return ck.get("step", 0), ck.get("seen_tok", 0), ck.get("wall_time", time.time()) |
|
|
|
|
|
def _safe_load_any(path: pathlib.Path, tgt: nn.Module, key: str | None = None): |
|
|
p = _resolve_ckpt(path) or path |
|
|
if not p.exists(): return 0 |
|
|
ck = _try_load(p, map_location="cpu") |
|
|
if ck is None: return 0 |
|
|
sd = ck.get(key, ck) if key else ck |
|
|
if isinstance(sd, dict) and "state_dict" in sd: sd = sd["state_dict"] |
|
|
tgt_sd = tgt.state_dict() |
|
|
filt = {k: v for k, v in sd.items() if k in tgt_sd and v.shape == tgt_sd[k].shape} |
|
|
if filt: tgt.load_state_dict(filt, strict=False) |
|
|
return len(filt) |
|
|
|
|
|
def infer_cfg_from_ckpt(path: pathlib.Path): |
|
|
p = _resolve_ckpt(path) or path |
|
|
if not p.exists(): return None |
|
|
sd = _try_load(p, map_location="cpu") |
|
|
if sd is None: return None |
|
|
if "cfg" in sd: return dict(sd["cfg"]) |
|
|
return None |
|
|
|
|
|
|
|
|
def _parse_grow_plan(s: str) -> List[int]: |
|
|
return sorted(set([int(x.strip()) for x in s.split(",") if x.strip() and int(x.strip()) >= 128])) |
|
|
|
|
|
def _count_enabled_params(*modules) -> int: |
|
|
return sum(sum(p.numel() for p in m.parameters()) for m in modules if m is not None) |
|
|
|
|
|
def _phase_freeze(core: nn.Module, *, freeze_core: bool, unfreeze_ln: bool, train_emb: bool): |
|
|
for p in core.parameters(): p.requires_grad = not freeze_core |
|
|
if freeze_core: |
|
|
if unfreeze_ln: |
|
|
for blk in core.blocks: |
|
|
for p in blk.ln1.parameters(): p.requires_grad = True |
|
|
for p in blk.ln2.parameters(): p.requires_grad = True |
|
|
for p in core.ln.parameters(): p.requires_grad = True |
|
|
if train_emb: |
|
|
for p in core.emb.parameters(): p.requires_grad = True |
|
|
|
|
|
def _train_phase( |
|
|
args, phase_name: str, |
|
|
core, ar_h, sat_h, opt, scaler, |
|
|
start_step, seen_tok, resume_wall_time, |
|
|
cfg, source, steps, block_size, batch_size, |
|
|
chat_cfg: dict, |
|
|
max_ckpts: int, |
|
|
target_tokens_override: Optional[int] = None |
|
|
): |
|
|
BLOCK = block_size |
|
|
BATCH = batch_size |
|
|
|
|
|
if target_tokens_override is not None: |
|
|
target_tokens = target_tokens_override |
|
|
else: |
|
|
ratio = 51.2 if args.chilla_max_double else 25 |
|
|
param_count = _count_enabled_params(core, ar_h, sat_h) |
|
|
target_tokens = int(ratio * param_count) |
|
|
|
|
|
if steps: |
|
|
phase_target_tokens = steps * BLOCK * BATCH |
|
|
total_tokens_needed = seen_tok + phase_target_tokens |
|
|
else: |
|
|
total_tokens_needed = target_tokens |
|
|
if total_tokens_needed <= seen_tok: |
|
|
print(f"[{phase_name}] target {total_tokens_needed} already reached.") |
|
|
return start_step, seen_tok, resume_wall_time |
|
|
|
|
|
stream = token_stream( |
|
|
source, total_tokens_needed, seed=42, |
|
|
chat=chat_cfg.get("chat", False), |
|
|
chat_messages_key=chat_cfg.get("key", "messages"), |
|
|
sft_add_generation_prompt=chat_cfg.get("gen_prompt", False), |
|
|
dataset_field_text=chat_cfg.get("text_field", "text") |
|
|
) |
|
|
|
|
|
ce_tok = nn.CrossEntropyLoss(label_smoothing=0.1) |
|
|
ce_gate = nn.CrossEntropyLoss() |
|
|
|
|
|
pbar = tqdm(total=total_tokens_needed, initial=seen_tok, unit="tok") |
|
|
|
|
|
grow_plan = _parse_grow_plan(args.grow_plan) if args.auto_grow else [] |
|
|
|
|
|
buf: list[int] = [] |
|
|
batch_accum: list[list[int]] = [] |
|
|
step = start_step |
|
|
steps_since_last_grow = 0 |
|
|
|
|
|
now_wall = time.time() |
|
|
last_save_mono = time.monotonic() - (now_wall - (resume_wall_time or now_wall)) |
|
|
|
|
|
print(f"[{phase_name}] Starting. Goal: {total_tokens_needed:,} tokens. Batch={BATCH}, Block={BLOCK}") |
|
|
|
|
|
while seen_tok < total_tokens_needed: |
|
|
try: |
|
|
while len(buf) < BLOCK: |
|
|
buf.append(next(stream)) |
|
|
except StopIteration: |
|
|
break |
|
|
|
|
|
seq = buf[:BLOCK] |
|
|
buf = buf[BLOCK:] |
|
|
batch_accum.append(seq) |
|
|
|
|
|
if len(batch_accum) < BATCH: |
|
|
continue |
|
|
|
|
|
ids = torch.tensor(batch_accum, device=DEV) |
|
|
batch_accum = [] |
|
|
|
|
|
tgt_ar = ids.clone() |
|
|
|
|
|
try: |
|
|
with amp(args.amp): |
|
|
h_ar = core(ids, causal_mask(ids.size(1))) |
|
|
logits_ar = ar_h(h_ar)[:, :-1] |
|
|
loss_ar = ce_tok(logits_ar.reshape(-1, VOCAB), tgt_ar[:, 1:].reshape(-1)) |
|
|
|
|
|
h_sat = core(ids, sat_mask(ids.size(1))) |
|
|
logits_sat, gate = sat_h(h_sat[:, -SAT_BLOCK:]) |
|
|
tgt_sat = ids[:, 1:SAT_BLOCK+1] |
|
|
loss_sat = ce_tok(logits_sat.reshape(-1, VOCAB), tgt_sat.reshape(-1)) |
|
|
if gate is not None: |
|
|
loss_sat += EMIT_LAMBDA * ce_gate(gate, torch.ones(ids.size(0), device=DEV, dtype=torch.long)) |
|
|
|
|
|
loss = loss_ar + loss_sat |
|
|
|
|
|
scaler.scale(loss).backward() |
|
|
scaler.unscale_(opt) |
|
|
nn.utils.clip_grad_norm_(core.parameters(), 1.0) |
|
|
scaler.step(opt) |
|
|
scaler.update() |
|
|
opt.zero_grad(set_to_none=True) |
|
|
|
|
|
except RuntimeError as e: |
|
|
msg = str(e).lower() |
|
|
if "out of memory" in msg or "cuda error" in msg: |
|
|
if BATCH > 1: |
|
|
print(f"\n[{phase_name} OOM] Reducing Batch: {BATCH} -> {BATCH - 1}") |
|
|
BATCH -= 1 |
|
|
else: |
|
|
new_block = max(128, BLOCK // 2) |
|
|
print(f"\n[{phase_name} OOM] Reducing Block: {BLOCK} -> {new_block}") |
|
|
BLOCK = new_block |
|
|
|
|
|
batch_accum = [] |
|
|
if DEV.type == "cuda": torch.cuda.empty_cache() |
|
|
steps_since_last_grow = 0 |
|
|
continue |
|
|
raise |
|
|
|
|
|
step += 1 |
|
|
toks_processed = BLOCK * BATCH |
|
|
seen_tok += toks_processed |
|
|
pbar.update(toks_processed) |
|
|
pbar.set_postfix(loss=f"{loss.item():.3f}", B=BATCH, L=BLOCK) |
|
|
|
|
|
if args.save_every_sec > 0: |
|
|
now_mono = time.monotonic() |
|
|
if now_mono - last_save_mono >= args.save_every_sec: |
|
|
ck_name = f"{phase_name}_step{step:08d}.pt" |
|
|
save_ckpt(pathlib.Path(args.save_dir) / ck_name, core, ar_h, sat_h, opt, scaler, |
|
|
meta={"cfg": cfg, "step": step, "seen_tok": seen_tok, "wall_time": time.time()}) |
|
|
_prune_checkpoints(pathlib.Path(args.save_dir), phase_name, max_ckpts) |
|
|
last_save_mono = now_mono |
|
|
|
|
|
if args.auto_grow: |
|
|
steps_since_last_grow += 1 |
|
|
if steps_since_last_grow >= args.grow_every_steps: |
|
|
steps_since_last_grow = 0 |
|
|
try: |
|
|
idx = grow_plan.index(BLOCK) |
|
|
if idx + 1 < len(grow_plan): |
|
|
BLOCK = grow_plan[idx + 1] |
|
|
print(f"[{phase_name} Grow] Block -> {BLOCK}") |
|
|
if DEV.type == "cuda": torch.cuda.empty_cache() |
|
|
except ValueError: |
|
|
grow_plan = sorted(set(grow_plan + [BLOCK])) |
|
|
|
|
|
pbar.close() |
|
|
|
|
|
save_ckpt(pathlib.Path(args.save_dir) / f"{phase_name}_final.pt", core, ar_h, sat_h, opt, scaler, |
|
|
meta={"cfg": cfg, "step": step, "seen_tok": seen_tok, "wall_time": time.time()}) |
|
|
|
|
|
return step, seen_tok, time.time() |
|
|
|
|
|
|
|
|
def train(args): |
|
|
cfg = PRESETS[args.preset].copy() |
|
|
|
|
|
if not args.fresh: |
|
|
src_probe = pathlib.Path(args.warmstart_from) if args.warmstart_from else pathlib.Path(args.save_dir) / "final.pt" |
|
|
prev_cfg = infer_cfg_from_ckpt(src_probe) |
|
|
else: prev_cfg = None |
|
|
|
|
|
if prev_cfg: |
|
|
cfg.update({k: v for k, v in prev_cfg.items() if k in cfg}) |
|
|
if args.x2 and prev_cfg.get("layers"): cfg["layers"] = max(cfg["layers"], prev_cfg["layers"] * 2) |
|
|
|
|
|
if args.rank: cfg["rank"] = args.rank |
|
|
if args.x2 and not prev_cfg: cfg["layers"] *= 2 |
|
|
|
|
|
print(f"Config: {cfg}") |
|
|
|
|
|
core = Encoder(cfg).to(DEV) |
|
|
ar_h = ARHead(cfg["d"]).to(DEV) |
|
|
sat_h = SATHead(cfg["d"], mode="var").to(DEV) |
|
|
|
|
|
if not args.fresh: |
|
|
src = pathlib.Path(args.warmstart_from) if args.warmstart_from else pathlib.Path(args.save_dir) / "final.pt" |
|
|
src = _resolve_ckpt(src) |
|
|
if src: |
|
|
loaded = _safe_load_any(src, core, key="core") |
|
|
_safe_load_any(src, ar_h, key="ar") |
|
|
_safe_load_any(src, sat_h, key="sat") |
|
|
if loaded: print(f"Warm-start loaded from {src}") |
|
|
|
|
|
_phase_freeze(core, freeze_core=args.freeze_core, unfreeze_ln=args.unfreeze_ln, train_emb=args.train_emb) |
|
|
|
|
|
opt = torch.optim.AdamW([ |
|
|
{"params": [p for p in core.parameters() if p.requires_grad], "lr": args.lr_core}, |
|
|
{"params": ar_h.parameters(), "lr": args.lr_head}, |
|
|
{"params": sat_h.parameters(), "lr": args.lr_head}, |
|
|
]) |
|
|
scaler = GradScaler(enabled=(args.amp and DEV.type == "cuda")) |
|
|
|
|
|
start_step, seen_tok, last_wall = 0, 0, None |
|
|
if args.resume and not args.fresh: |
|
|
start_step, seen_tok, last_wall = load_ckpt(pathlib.Path(args.resume), core, ar_h, sat_h, opt, scaler) |
|
|
print(f"Resumed from step {start_step}") |
|
|
|
|
|
step, seen_tok, last_wall = _train_phase( |
|
|
args, "pretrain", core, ar_h, sat_h, opt, scaler, |
|
|
start_step, seen_tok, last_wall, cfg, |
|
|
args.source, args.steps, |
|
|
args.block or DEFAULT_BLOCK, |
|
|
args.batch_size or DEFAULT_BATCH, |
|
|
chat_cfg={"chat": args.chat, "key": args.chat_messages_key, "gen_prompt": args.sft_add_generation_prompt, "text_field": args.dataset_field_text}, |
|
|
max_ckpts=args.max_ckpts, |
|
|
target_tokens_override=args.target_tokens |
|
|
) |
|
|
|
|
|
if (not args.after_sft_source) and (args.after_sft_steps and args.after_sft_steps > 0): |
|
|
args.after_sft_source = DEFAULT_AFTER_SFT_SOURCES |
|
|
args.after_sft_chat = True |
|
|
if args.after_sft_add_generation_prompt is None: args.after_sft_add_generation_prompt = True |
|
|
if not args.after_sft_block: args.after_sft_block = DEFAULT_AFTER_SFT_BLOCK |
|
|
|
|
|
if args.after_sft_source and args.after_sft_steps and args.after_sft_steps > 0: |
|
|
print("\n[Orchestrator] Starting Post-Pretraining SFT Phase...") |
|
|
|
|
|
_phase_freeze(core, |
|
|
freeze_core=args.after_sft_freeze_core, |
|
|
unfreeze_ln=args.after_sft_unfreeze_ln, |
|
|
train_emb=args.after_sft_train_emb) |
|
|
|
|
|
opt = torch.optim.AdamW([ |
|
|
{"params": [p for p in core.parameters() if p.requires_grad], "lr": args.after_sft_lr_core or args.lr_core}, |
|
|
{"params": ar_h.parameters(), "lr": args.after_sft_lr_head or args.lr_head}, |
|
|
{"params": sat_h.parameters(), "lr": args.after_sft_lr_head or args.lr_head}, |
|
|
]) |
|
|
|
|
|
step, seen_tok, last_wall = _train_phase( |
|
|
args, "sft", core, ar_h, sat_h, opt, scaler, |
|
|
step, seen_tok, last_wall, cfg, |
|
|
args.after_sft_source, args.after_sft_steps, |
|
|
args.after_sft_block or DEFAULT_AFTER_SFT_BLOCK, |
|
|
args.batch_size or DEFAULT_BATCH, |
|
|
chat_cfg={ |
|
|
"chat": args.after_sft_chat, |
|
|
"key": args.after_sft_chat_messages_key, |
|
|
"gen_prompt": args.after_sft_add_generation_prompt if args.after_sft_add_generation_prompt is not None else args.sft_add_generation_prompt, |
|
|
"text_field": args.after_sft_dataset_field_text |
|
|
}, |
|
|
max_ckpts=args.max_ckpts, |
|
|
target_tokens_override=None |
|
|
) |
|
|
|
|
|
save_ckpt(pathlib.Path(args.save_dir) / "final.pt", core, ar_h, sat_h, opt, scaler, |
|
|
meta={"cfg": cfg, "step": step, "seen_tok": seen_tok, "wall_time": time.time()}) |
|
|
print("π All Training Complete") |
|
|
|
|
|
|
|
|
def _apply_penalties(logits, ids, n, rep_p, pres_p, freq_p): |
|
|
if ids.numel() == 0: return logits |
|
|
hist = ids[0, -n:].long() if n > 0 else ids[0].long() |
|
|
uniq, counts = torch.unique(hist, return_counts=True) |
|
|
if pres_p or freq_p: |
|
|
logits[..., uniq] -= (pres_p + freq_p * counts.float()) |
|
|
if rep_p != 1.0: |
|
|
sel = logits[..., uniq] |
|
|
logits[..., uniq] = torch.where(sel > 0, sel / rep_p, sel * rep_p) |
|
|
return logits |
|
|
|
|
|
def _sample(logits, T, top_k, top_p, min_p, greedy): |
|
|
if greedy: return logits.argmax(-1, keepdim=True) |
|
|
probs = (logits / max(T, 1e-8)).softmax(-1) |
|
|
if top_k: |
|
|
v, i = torch.topk(probs, min(top_k, probs.size(-1))) |
|
|
probs = torch.zeros_like(probs).scatter_(-1, i, v) |
|
|
if top_p < 1.0: |
|
|
s_probs, s_idx = torch.sort(probs, descending=True, dim=-1) |
|
|
probs = torch.zeros_like(probs).scatter_(-1, s_idx, s_probs * (torch.cumsum(s_probs, -1) <= top_p).float()) |
|
|
if min_p > 0: probs[probs < min_p] = 0 |
|
|
if probs.sum() == 0: return logits.argmax(-1, keepdim=True) |
|
|
return probs.div_(probs.sum()).multinomial(1) |
|
|
|
|
|
@torch.no_grad() |
|
|
def infer(args): |
|
|
path = _resolve_ckpt(pathlib.Path(args.ckpt)) or pathlib.Path(args.ckpt) |
|
|
sd = torch.load(path, map_location="cpu", weights_only=False) |
|
|
cfg = sd["cfg"] |
|
|
|
|
|
core = Encoder(cfg).to(DEV) |
|
|
ar_h = ARHead(cfg["d"]).to(DEV) |
|
|
sat_h = SATHead(cfg["d"]).to(DEV) |
|
|
|
|
|
core.load_state_dict(sd["core"]) |
|
|
ar_h.load_state_dict(sd["ar"]) |
|
|
sat_h.load_state_dict(sd["sat"]) |
|
|
|
|
|
|
|
|
prompt_tokens = tok.encode(args.prompt) |
|
|
ids = torch.tensor([prompt_tokens], device=DEV) |
|
|
if ids.size(1) == 0: ids = torch.tensor([[EOS]], device=DEV) |
|
|
|
|
|
prompt_len = ids.size(1) |
|
|
|
|
|
print(f"Generating ({args.mode})...") |
|
|
start = time.time() |
|
|
|
|
|
|
|
|
sys.stdout.write(f"{Colors.PROMPT}{Colors.BOLD}{args.prompt}{Colors.RESET}") |
|
|
sys.stdout.flush() |
|
|
|
|
|
if args.mode == "ar": |
|
|
h, kvs = core(ids, causal_mask(ids.size(1)), use_cache=True) |
|
|
for _ in range(args.max_new): |
|
|
logits = ar_h(h)[:, -1] |
|
|
logits = _apply_penalties(logits, ids, args.penalty_last_n, args.repetition_penalty, args.presence_penalty, args.frequency_penalty) |
|
|
nxt = _sample(logits, args.temperature, args.top_k, args.top_p, args.min_p, args.greedy) |
|
|
ids = torch.cat([ids, nxt], 1) |
|
|
|
|
|
|
|
|
new_tok = tok.decode([nxt.item()]) |
|
|
sys.stdout.write(f"{Colors.GENERATED}{new_tok}") |
|
|
sys.stdout.flush() |
|
|
|
|
|
|
|
|
if nxt.item() == EOS: |
|
|
break |
|
|
|
|
|
h, kvs = core(ids[:, -1:], None, kv_caches=kvs, use_cache=True) |
|
|
else: |
|
|
added = 0 |
|
|
while added < args.max_new: |
|
|
h = core(ids, sat_mask(ids.size(1))) |
|
|
logits_all, gate = sat_h(h[:, -SAT_BLOCK:]) |
|
|
stride = 2 if (not args.var or gate is None) else (gate.softmax(-1).multinomial(1).item() + 1) |
|
|
|
|
|
for i in range(int(stride)): |
|
|
logits = logits_all[:, i] |
|
|
logits = _apply_penalties(logits, ids, args.penalty_last_n, args.repetition_penalty, args.presence_penalty, args.frequency_penalty) |
|
|
nxt = _sample(logits, args.temperature, args.top_k, args.top_p, args.min_p, args.greedy) |
|
|
ids = torch.cat([ids, nxt], 1) |
|
|
|
|
|
|
|
|
new_tok = tok.decode([nxt.item()]) |
|
|
sys.stdout.write(f"{Colors.GENERATED}{new_tok}") |
|
|
sys.stdout.flush() |
|
|
|
|
|
added += 1 |
|
|
if added >= args.max_new: break |
|
|
if nxt.item() == EOS: break |
|
|
|
|
|
if nxt.item() == EOS: break |
|
|
|
|
|
|
|
|
print(f"\n{Colors.DIM}[{time.time()-start:.2f}s | {ids.size(1) - prompt_len} tokens generated]{Colors.RESET}") |
|
|
|
|
|
|
|
|
def main(): |
|
|
ap = argparse.ArgumentParser() |
|
|
sub = ap.add_subparsers(dest="cmd", required=True) |
|
|
|
|
|
tr = sub.add_parser("train") |
|
|
tr.add_argument("--preset", choices=PRESETS, default="small") |
|
|
tr.add_argument("--rank", type=int) |
|
|
tr.add_argument("--block", type=int, default=DEFAULT_BLOCK) |
|
|
tr.add_argument("--batch_size", type=int, default=DEFAULT_BATCH) |
|
|
tr.add_argument("--source", default=DEFAULT_PRETRAIN_SOURCES) |
|
|
tr.add_argument("--target_tokens", type=int) |
|
|
tr.add_argument("--steps", type=int) |
|
|
tr.add_argument("--amp", action="store_true") |
|
|
tr.add_argument("--save_every_sec", type=int, default=DEFAULT_SAVE_SEC) |
|
|
tr.add_argument("--save_dir", default=str(CKDIR)) |
|
|
tr.add_argument("--resume", type=str) |
|
|
tr.add_argument("--x2", action="store_true") |
|
|
tr.add_argument("--warmstart_from", type=str) |
|
|
tr.add_argument("--fresh", action="store_true") |
|
|
tr.add_argument("--max_ckpts", type=int, default=None) |
|
|
tr.add_argument("--chilla_max_double", action="store_true") |
|
|
|
|
|
tr.add_argument("--freeze_core", action="store_true") |
|
|
tr.add_argument("--unfreeze_ln", action="store_true") |
|
|
tr.add_argument("--train_emb", action="store_true") |
|
|
tr.add_argument("--lr_core", type=float, default=LR_CORE) |
|
|
tr.add_argument("--lr_head", type=float, default=LR_HEAD) |
|
|
|
|
|
tr.add_argument("--chat", action="store_true") |
|
|
tr.add_argument("--chat_messages_key", default="messages") |
|
|
tr.add_argument("--dataset_field_text", default="text") |
|
|
tr.add_argument("--sft_add_generation_prompt", action="store_true") |
|
|
|
|
|
tr.add_argument("--auto_grow", action="store_true") |
|
|
tr.add_argument("--grow_plan", default="576,640,768,896,1024,1122") |
|
|
tr.add_argument("--grow_every_steps", type=int, default=50000) |
|
|
|
|
|
tr.add_argument("--after_sft_source", default="") |
|
|
tr.add_argument("--after_sft_steps", type=int, default=0) |
|
|
tr.add_argument("--after_sft_chat", action="store_true") |
|
|
tr.add_argument("--after_sft_chat_messages_key", default="messages") |
|
|
tr.add_argument("--after_sft_dataset_field_text", default="text") |
|
|
tr.add_argument("--after_sft_add_generation_prompt", type=bool, default=None) |
|
|
tr.add_argument("--after_sft_block", type=int, default=0) |
|
|
tr.add_argument("--after_sft_freeze_core", action="store_true") |
|
|
tr.add_argument("--after_sft_unfreeze_ln", action="store_true") |
|
|
tr.add_argument("--after_sft_train_emb", action="store_true") |
|
|
tr.add_argument("--after_sft_lr_core", type=float, default=0.0) |
|
|
tr.add_argument("--after_sft_lr_head", type=float, default=0.0) |
|
|
|
|
|
inf = sub.add_parser("infer") |
|
|
inf.add_argument("--mode", choices=["ar", "sat"], required=True) |
|
|
inf.add_argument("--ckpt", required=True) |
|
|
inf.add_argument("--prompt", required=True) |
|
|
inf.add_argument("--max_new", type=int, default=120) |
|
|
inf.add_argument("--temperature", type=float, default=1.0) |
|
|
inf.add_argument("--greedy", action="store_true") |
|
|
inf.add_argument("--top_k", type=int, default=0) |
|
|
inf.add_argument("--top_p", type=float, default=1.0) |
|
|
inf.add_argument("--min_p", type=float, default=0.0) |
|
|
inf.add_argument("--repetition_penalty", type=float, default=1.0) |
|
|
inf.add_argument("--presence_penalty", type=float, default=0.0) |
|
|
inf.add_argument("--frequency_penalty", type=float, default=0.0) |
|
|
inf.add_argument("--penalty_last_n", type=int, default=64) |
|
|
inf.add_argument("--var", action="store_true") |
|
|
|
|
|
args = ap.parse_args() |
|
|
if args.cmd == "train": train(args) |
|
|
else: infer(args) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |