hdnh2006 commited on
Commit
7a49537
•
1 Parent(s): 6ae744b

yolov8n added

Browse files
README.md CHANGED
@@ -10,7 +10,7 @@ license: agpl-3.0
10
 
11
  # YOLOv8 for crack segmentation 🚀
12
 
13
- This repository contains the Ultralytics YOLOv8 models trained on the Crack-seg dataset, a comprehensive resource designed for crack segmentation tasks in road and wall scenarios. The dataset includes 4029 static images divided into training (3717 images), testing (112 images), and validation (200 images) sets.
14
 
15
 
16
  <div align="center">
 
10
 
11
  # YOLOv8 for crack segmentation 🚀
12
 
13
+ This repository contains the Ultralytics YOLOv8 models trained on the [Crack-seg dataset](https://docs.ultralytics.com/datasets/segment/crack-seg/) by [OpenSistemas](https://bit.ly/3NMFz8D), a comprehensive resource designed for crack segmentation tasks in road and wall scenarios. The dataset includes 4029 static images divided into training (3717 images), testing (112 images), and validation (200 images) sets.
14
 
15
 
16
  <div align="center">
yolov8n/BoxF1_curve.png ADDED
yolov8n/BoxPR_curve.png ADDED
yolov8n/BoxP_curve.png ADDED
yolov8n/BoxR_curve.png ADDED
yolov8n/MaskF1_curve.png ADDED
yolov8n/MaskPR_curve.png ADDED
yolov8n/MaskP_curve.png ADDED
yolov8n/MaskR_curve.png ADDED
yolov8n/args.yaml ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: segment
2
+ mode: train
3
+ model: yolov8n-seg.pt
4
+ data: crack-seg.yaml
5
+ epochs: 100
6
+ time: null
7
+ patience: 50
8
+ batch: 32
9
+ imgsz: 640
10
+ save: true
11
+ save_period: -1
12
+ cache: ram
13
+ device: null
14
+ workers: 16
15
+ project: crack-seg
16
+ name: yolov8n
17
+ exist_ok: false
18
+ pretrained: true
19
+ optimizer: auto
20
+ verbose: true
21
+ seed: 0
22
+ deterministic: true
23
+ single_cls: false
24
+ rect: false
25
+ cos_lr: false
26
+ close_mosaic: 10
27
+ resume: false
28
+ amp: true
29
+ fraction: 1.0
30
+ profile: false
31
+ freeze: null
32
+ multi_scale: false
33
+ overlap_mask: true
34
+ mask_ratio: 4
35
+ dropout: 0.0
36
+ val: true
37
+ split: val
38
+ save_json: false
39
+ save_hybrid: false
40
+ conf: null
41
+ iou: 0.7
42
+ max_det: 300
43
+ half: false
44
+ dnn: false
45
+ plots: true
46
+ source: null
47
+ vid_stride: 1
48
+ stream_buffer: false
49
+ visualize: false
50
+ augment: false
51
+ agnostic_nms: false
52
+ classes: null
53
+ retina_masks: false
54
+ embed: null
55
+ show: false
56
+ save_frames: false
57
+ save_txt: false
58
+ save_conf: false
59
+ save_crop: false
60
+ show_labels: true
61
+ show_conf: true
62
+ show_boxes: true
63
+ line_width: null
64
+ format: torchscript
65
+ keras: false
66
+ optimize: false
67
+ int8: false
68
+ dynamic: false
69
+ simplify: false
70
+ opset: null
71
+ workspace: 4
72
+ nms: false
73
+ lr0: 0.01
74
+ lrf: 0.01
75
+ momentum: 0.937
76
+ weight_decay: 0.0005
77
+ warmup_epochs: 3.0
78
+ warmup_momentum: 0.8
79
+ warmup_bias_lr: 0.1
80
+ box: 7.5
81
+ cls: 0.5
82
+ dfl: 1.5
83
+ pose: 12.0
84
+ kobj: 1.0
85
+ label_smoothing: 0.0
86
+ nbs: 64
87
+ hsv_h: 0.015
88
+ hsv_s: 0.7
89
+ hsv_v: 0.4
90
+ degrees: 0.0
91
+ translate: 0.1
92
+ scale: 0.5
93
+ shear: 0.0
94
+ perspective: 0.0
95
+ flipud: 0.0
96
+ fliplr: 0.5
97
+ mosaic: 1.0
98
+ mixup: 0.0
99
+ copy_paste: 0.0
100
+ auto_augment: randaugment
101
+ erasing: 0.4
102
+ crop_fraction: 1.0
103
+ cfg: null
104
+ tracker: botsort.yaml
105
+ save_dir: crack-seg/yolov8n
yolov8n/confusion_matrix.png ADDED
yolov8n/confusion_matrix_normalized.png ADDED
yolov8n/labels.jpg ADDED
yolov8n/labels_correlogram.jpg ADDED
yolov8n/results.csv ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch, train/box_loss, train/seg_loss, train/cls_loss, train/dfl_loss, metrics/precision(B), metrics/recall(B), metrics/mAP50(B), metrics/mAP50-95(B), metrics/precision(M), metrics/recall(M), metrics/mAP50(M), metrics/mAP50-95(M), val/box_loss, val/seg_loss, val/cls_loss, val/dfl_loss, lr/pg0, lr/pg1, lr/pg2
2
+ 1, 1.4215, 2.1162, 2.0227, 1.3462, 0.21215, 0.26104, 0.14708, 0.0494, 0.35628, 0.27341, 0.20119, 0.05147, 2.3727, 1.5706, 3.7141, 2.4328, 0.00066097, 0.00066097, 0.00066097
3
+ 2, 1.3604, 1.6691, 1.5045, 1.2913, 0.54522, 0.47791, 0.44629, 0.17504, 0.52887, 0.38956, 0.32759, 0.09306, 2.0162, 1.4068, 2.9415, 2.0302, 0.0013145, 0.0013145, 0.0013145
4
+ 3, 1.3304, 1.6352, 1.3483, 1.2781, 0.40678, 0.49398, 0.29781, 0.10512, 0.38788, 0.46061, 0.30576, 0.07611, 2.2461, 1.378, 2.2787, 1.9873, 0.0019548, 0.0019548, 0.0019548
5
+ 4, 1.2986, 1.6638, 1.2646, 1.2541, 0.49629, 0.59353, 0.47817, 0.22973, 0.40326, 0.51807, 0.31822, 0.08533, 1.8045, 1.3485, 1.7746, 1.6785, 0.0019406, 0.0019406, 0.0019406
6
+ 5, 1.2295, 1.6228, 1.1945, 1.2299, 0.65961, 0.59924, 0.54689, 0.26858, 0.54161, 0.46977, 0.34837, 0.09579, 1.6908, 1.407, 1.6586, 1.5769, 0.0019406, 0.0019406, 0.0019406
7
+ 6, 1.1965, 1.6065, 1.1405, 1.2241, 0.44743, 0.55422, 0.38188, 0.16786, 0.32903, 0.4739, 0.23394, 0.05615, 1.8158, 1.3222, 2.0589, 1.7699, 0.0019208, 0.0019208, 0.0019208
8
+ 7, 1.1536, 1.5711, 1.097, 1.1912, 0.7091, 0.64612, 0.66919, 0.3483, 0.59485, 0.55422, 0.49547, 0.14569, 1.5551, 1.2506, 1.4384, 1.391, 0.001901, 0.001901, 0.001901
9
+ 8, 1.1254, 1.569, 1.0548, 1.1796, 0.70713, 0.65936, 0.63815, 0.39316, 0.59024, 0.53012, 0.43279, 0.12199, 1.4237, 1.3442, 1.4993, 1.3534, 0.0018812, 0.0018812, 0.0018812
10
+ 9, 1.1028, 1.554, 1.046, 1.1772, 0.66467, 0.62888, 0.66343, 0.36417, 0.48539, 0.57831, 0.46756, 0.1311, 1.4044, 1.23, 1.5193, 1.346, 0.0018614, 0.0018614, 0.0018614
11
+ 10, 1.085, 1.5388, 1.0042, 1.1595, 0.64374, 0.65462, 0.60482, 0.31533, 0.51015, 0.49398, 0.391, 0.1082, 1.6036, 1.2481, 1.5655, 1.5104, 0.0018416, 0.0018416, 0.0018416
12
+ 11, 1.0708, 1.547, 1.0194, 1.1606, 0.74693, 0.68675, 0.71499, 0.45273, 0.69128, 0.60643, 0.55742, 0.17542, 1.4129, 1.19, 1.3117, 1.3378, 0.0018218, 0.0018218, 0.0018218
13
+ 12, 1.0663, 1.5584, 0.99878, 1.1528, 0.77969, 0.61446, 0.69412, 0.42635, 0.67777, 0.53414, 0.51236, 0.16316, 1.3591, 1.1968, 1.3206, 1.2983, 0.001802, 0.001802, 0.001802
14
+ 13, 1.0324, 1.5302, 0.97604, 1.1461, 0.76375, 0.69478, 0.7232, 0.44486, 0.68199, 0.57707, 0.5462, 0.17274, 1.3814, 1.2332, 1.276, 1.2974, 0.0017822, 0.0017822, 0.0017822
15
+ 14, 1.0265, 1.5065, 0.95635, 1.1375, 0.74337, 0.66265, 0.67047, 0.43493, 0.62448, 0.5743, 0.45878, 0.15248, 1.258, 1.2828, 1.3367, 1.2539, 0.0017624, 0.0017624, 0.0017624
16
+ 15, 1.0021, 1.4974, 0.91614, 1.1184, 0.81774, 0.66668, 0.74217, 0.48271, 0.69992, 0.57142, 0.54123, 0.18711, 1.2746, 1.2593, 1.1864, 1.2158, 0.0017426, 0.0017426, 0.0017426
17
+ 16, 1.0191, 1.5109, 0.93066, 1.1337, 0.78712, 0.6747, 0.71252, 0.45244, 0.70361, 0.60064, 0.56872, 0.18562, 1.222, 1.2259, 1.2495, 1.1969, 0.0017228, 0.0017228, 0.0017228
18
+ 17, 0.9831, 1.4984, 0.91036, 1.115, 0.84578, 0.67068, 0.73619, 0.47768, 0.73645, 0.57028, 0.56158, 0.18117, 1.3219, 1.1885, 1.3278, 1.3151, 0.001703, 0.001703, 0.001703
19
+ 18, 0.98878, 1.4836, 0.89825, 1.1174, 0.75994, 0.68675, 0.70472, 0.46101, 0.64312, 0.56451, 0.52561, 0.16329, 1.2223, 1.1927, 1.2929, 1.2156, 0.0016832, 0.0016832, 0.0016832
20
+ 19, 0.98556, 1.5051, 0.89943, 1.1131, 0.77303, 0.68675, 0.75373, 0.51319, 0.65925, 0.59438, 0.56204, 0.19341, 1.2525, 1.1605, 1.2106, 1.2366, 0.0016634, 0.0016634, 0.0016634
21
+ 20, 0.9552, 1.4735, 0.87909, 1.1054, 0.7586, 0.71937, 0.75549, 0.48973, 0.69439, 0.57831, 0.55026, 0.18563, 1.2029, 1.233, 1.1303, 1.1936, 0.0016436, 0.0016436, 0.0016436
22
+ 21, 0.95993, 1.4551, 0.86493, 1.1098, 0.74052, 0.73352, 0.72855, 0.48623, 0.65727, 0.62385, 0.57576, 0.18605, 1.242, 1.2224, 1.1776, 1.2263, 0.0016238, 0.0016238, 0.0016238
23
+ 22, 0.96458, 1.4812, 0.89165, 1.1118, 0.82932, 0.70249, 0.77377, 0.5221, 0.7267, 0.59839, 0.5929, 0.19992, 1.1765, 1.1863, 1.1219, 1.1772, 0.001604, 0.001604, 0.001604
24
+ 23, 0.94967, 1.4674, 0.84332, 1.0949, 0.76775, 0.67068, 0.73909, 0.48607, 0.67055, 0.58853, 0.55827, 0.17803, 1.217, 1.2055, 1.1981, 1.1668, 0.0015842, 0.0015842, 0.0015842
25
+ 24, 0.94099, 1.4928, 0.8554, 1.0952, 0.78016, 0.72686, 0.77601, 0.51755, 0.66684, 0.62651, 0.56654, 0.19142, 1.1876, 1.2024, 1.1419, 1.1623, 0.0015644, 0.0015644, 0.0015644
26
+ 25, 0.92318, 1.4441, 0.83466, 1.0871, 0.76848, 0.71486, 0.75394, 0.54226, 0.72933, 0.62764, 0.60902, 0.19747, 1.147, 1.2039, 1.113, 1.1512, 0.0015446, 0.0015446, 0.0015446
27
+ 26, 0.93179, 1.4744, 0.8445, 1.0946, 0.75054, 0.71084, 0.72348, 0.52246, 0.65038, 0.61446, 0.54402, 0.17394, 1.0815, 1.2175, 1.1119, 1.1124, 0.0015248, 0.0015248, 0.0015248
28
+ 27, 0.918, 1.4555, 0.8238, 1.0938, 0.78876, 0.7198, 0.78369, 0.53492, 0.70074, 0.63948, 0.62518, 0.19676, 1.1715, 1.1774, 1.0766, 1.1551, 0.001505, 0.001505, 0.001505
29
+ 28, 0.92719, 1.465, 0.82293, 1.0926, 0.77424, 0.71888, 0.75937, 0.53169, 0.68205, 0.64257, 0.61697, 0.20315, 1.1155, 1.1819, 1.0793, 1.1267, 0.0014852, 0.0014852, 0.0014852
30
+ 29, 0.91256, 1.4473, 0.80261, 1.0828, 0.84284, 0.70683, 0.77823, 0.53964, 0.74352, 0.60241, 0.60278, 0.19807, 1.1111, 1.2165, 1.0732, 1.1333, 0.0014654, 0.0014654, 0.0014654
31
+ 30, 0.9074, 1.4463, 0.8266, 1.0868, 0.76259, 0.7353, 0.77474, 0.54252, 0.68313, 0.63205, 0.62009, 0.2076, 1.1087, 1.226, 1.0426, 1.101, 0.0014456, 0.0014456, 0.0014456
32
+ 31, 0.90073, 1.4353, 0.80767, 1.0763, 0.79321, 0.70861, 0.76638, 0.54722, 0.68517, 0.6506, 0.60815, 0.20459, 1.0109, 1.2374, 1.0754, 1.0693, 0.0014258, 0.0014258, 0.0014258
33
+ 32, 0.90182, 1.4202, 0.79833, 1.0856, 0.81997, 0.69478, 0.75207, 0.52055, 0.74166, 0.60643, 0.61024, 0.19847, 1.1434, 1.1755, 1.1166, 1.1504, 0.001406, 0.001406, 0.001406
34
+ 33, 0.89268, 1.4301, 0.79419, 1.0776, 0.79858, 0.69076, 0.75654, 0.51713, 0.70454, 0.59438, 0.58393, 0.18669, 1.1357, 1.1965, 1.0853, 1.1595, 0.0013862, 0.0013862, 0.0013862
35
+ 34, 0.88709, 1.4385, 0.77524, 1.0692, 0.83159, 0.73376, 0.8136, 0.58427, 0.74241, 0.62505, 0.61839, 0.183, 1.0874, 1.2378, 0.98556, 1.1056, 0.0013664, 0.0013664, 0.0013664
36
+ 35, 0.88749, 1.4351, 0.77864, 1.0725, 0.76825, 0.7855, 0.7831, 0.56169, 0.6868, 0.63855, 0.59151, 0.19505, 1.0768, 1.2122, 0.98527, 1.1241, 0.0013466, 0.0013466, 0.0013466
37
+ 36, 0.89221, 1.4447, 0.78608, 1.0781, 0.84399, 0.73896, 0.80336, 0.57837, 0.72556, 0.68273, 0.63585, 0.19896, 1.0901, 1.1805, 0.9959, 1.1035, 0.0013268, 0.0013268, 0.0013268
38
+ 37, 0.87459, 1.4099, 0.77482, 1.0721, 0.77957, 0.69594, 0.77171, 0.5473, 0.6877, 0.59839, 0.60562, 0.20149, 1.0761, 1.2477, 1.027, 1.117, 0.001307, 0.001307, 0.001307
39
+ 38, 0.87033, 1.4194, 0.7677, 1.0618, 0.78624, 0.74699, 0.7801, 0.57147, 0.68699, 0.62651, 0.61525, 0.19381, 1.0254, 1.224, 0.99839, 1.078, 0.0012872, 0.0012872, 0.0012872
40
+ 39, 0.86741, 1.4213, 0.75658, 1.0622, 0.76611, 0.77612, 0.79275, 0.5601, 0.68286, 0.69178, 0.64856, 0.20868, 1.0837, 1.196, 1.0406, 1.0813, 0.0012674, 0.0012674, 0.0012674
41
+ 40, 0.8675, 1.4221, 0.76295, 1.0559, 0.80111, 0.76028, 0.78439, 0.57174, 0.66449, 0.66017, 0.60069, 0.19532, 1.021, 1.1502, 0.95563, 1.0723, 0.0012476, 0.0012476, 0.0012476
42
+ 41, 0.85549, 1.3993, 0.73354, 1.0621, 0.82905, 0.70115, 0.76709, 0.56989, 0.74554, 0.63052, 0.62768, 0.20589, 1.0289, 1.2057, 0.99264, 1.0773, 0.0012278, 0.0012278, 0.0012278
43
+ 42, 0.86636, 1.4061, 0.74964, 1.0668, 0.82289, 0.74297, 0.7922, 0.574, 0.72278, 0.66265, 0.64179, 0.20943, 1.0122, 1.1712, 0.99923, 1.0788, 0.001208, 0.001208, 0.001208
44
+ 43, 0.85038, 1.4017, 0.74197, 1.0538, 0.76353, 0.78313, 0.79827, 0.57007, 0.68938, 0.66667, 0.64505, 0.22038, 1.0345, 1.1584, 0.98437, 1.0921, 0.0011882, 0.0011882, 0.0011882
45
+ 44, 0.84677, 1.4054, 0.74725, 1.0556, 0.83932, 0.72691, 0.77186, 0.54444, 0.74869, 0.63052, 0.62695, 0.2053, 0.9986, 1.1731, 0.97491, 1.0643, 0.0011684, 0.0011684, 0.0011684
46
+ 45, 0.83731, 1.4003, 0.72532, 1.0512, 0.84838, 0.74297, 0.79993, 0.57911, 0.7566, 0.64917, 0.6319, 0.19492, 1.0264, 1.2066, 0.95801, 1.0784, 0.0011486, 0.0011486, 0.0011486
47
+ 46, 0.82806, 1.3897, 0.71415, 1.0397, 0.79143, 0.74297, 0.76606, 0.56527, 0.75757, 0.63052, 0.64843, 0.2103, 0.99448, 1.1885, 0.95266, 1.0651, 0.0011288, 0.0011288, 0.0011288
48
+ 47, 0.84107, 1.4091, 0.71196, 1.0498, 0.81356, 0.73605, 0.78496, 0.58275, 0.66763, 0.68571, 0.63281, 0.21454, 1.008, 1.1947, 0.97147, 1.0633, 0.001109, 0.001109, 0.001109
49
+ 48, 0.83592, 1.3875, 0.71454, 1.0529, 0.80407, 0.72517, 0.79319, 0.57845, 0.70998, 0.65462, 0.63753, 0.21678, 1.0215, 1.1925, 0.98487, 1.0893, 0.0010892, 0.0010892, 0.0010892
50
+ 49, 0.83834, 1.4064, 0.7245, 1.0515, 0.85224, 0.72691, 0.81544, 0.59514, 0.76379, 0.63052, 0.65683, 0.21651, 0.98583, 1.1805, 0.92186, 1.0615, 0.0010694, 0.0010694, 0.0010694
51
+ 50, 0.83765, 1.4015, 0.71677, 1.0454, 0.84172, 0.7751, 0.7972, 0.59728, 0.75109, 0.68675, 0.65468, 0.21614, 0.98726, 1.1659, 0.91942, 1.0363, 0.0010496, 0.0010496, 0.0010496
52
+ 51, 0.84117, 1.4026, 0.71003, 1.0493, 0.82499, 0.71888, 0.77518, 0.57175, 0.69161, 0.66667, 0.63889, 0.20087, 1.0029, 1.1742, 0.92104, 1.0606, 0.0010298, 0.0010298, 0.0010298
53
+ 52, 0.81785, 1.385, 0.69463, 1.0458, 0.83384, 0.74569, 0.78757, 0.57824, 0.75538, 0.64487, 0.63701, 0.21927, 0.99786, 1.1994, 0.91649, 1.0468, 0.00101, 0.00101, 0.00101
54
+ 53, 0.82807, 1.3873, 0.69252, 1.0375, 0.83452, 0.73092, 0.79363, 0.60476, 0.74457, 0.64659, 0.6612, 0.22654, 0.97971, 1.1707, 0.94389, 1.0804, 0.0009902, 0.0009902, 0.0009902
55
+ 54, 0.81993, 1.3778, 0.69183, 1.038, 0.78024, 0.74148, 0.75865, 0.57166, 0.79354, 0.63052, 0.65467, 0.21894, 0.97017, 1.1957, 0.9419, 1.0457, 0.0009704, 0.0009704, 0.0009704
56
+ 55, 0.81394, 1.3769, 0.68666, 1.038, 0.82862, 0.75502, 0.80482, 0.59437, 0.74383, 0.64659, 0.63042, 0.19426, 0.95423, 1.1785, 0.93602, 1.0436, 0.0009506, 0.0009506, 0.0009506
57
+ 56, 0.81061, 1.3778, 0.67249, 1.0325, 0.839, 0.73252, 0.78959, 0.59624, 0.7637, 0.65462, 0.66248, 0.22104, 0.99793, 1.1682, 0.88676, 1.0663, 0.0009308, 0.0009308, 0.0009308
58
+ 57, 0.79952, 1.3471, 0.66655, 1.0339, 0.80657, 0.76305, 0.80464, 0.61486, 0.69895, 0.67135, 0.63881, 0.22232, 0.95465, 1.1867, 0.8707, 1.0403, 0.000911, 0.000911, 0.000911
59
+ 58, 0.80012, 1.3694, 0.67406, 1.0269, 0.87307, 0.71888, 0.79093, 0.59234, 0.78509, 0.64552, 0.65248, 0.22671, 0.99651, 1.2157, 0.87826, 1.042, 0.0008912, 0.0008912, 0.0008912
60
+ 59, 0.81684, 1.3844, 0.67934, 1.0385, 0.85024, 0.75245, 0.80138, 0.60458, 0.76834, 0.67068, 0.66218, 0.21666, 0.95422, 1.1804, 0.87346, 1.0374, 0.0008714, 0.0008714, 0.0008714
61
+ 60, 0.80344, 1.3717, 0.66472, 1.0348, 0.85392, 0.73494, 0.79535, 0.57226, 0.74947, 0.64659, 0.62984, 0.21925, 1.031, 1.1833, 0.92482, 1.0803, 0.0008516, 0.0008516, 0.0008516
62
+ 61, 0.79937, 1.3701, 0.66554, 1.0248, 0.79807, 0.7751, 0.79397, 0.59254, 0.69469, 0.6747, 0.63385, 0.21985, 0.93904, 1.1834, 0.90417, 1.0148, 0.0008318, 0.0008318, 0.0008318
63
+ 62, 0.80232, 1.3564, 0.6611, 1.0301, 0.82418, 0.79067, 0.81159, 0.61535, 0.71488, 0.68473, 0.63272, 0.21232, 0.95702, 1.1791, 0.86163, 1.0624, 0.000812, 0.000812, 0.000812
64
+ 63, 0.79602, 1.3577, 0.65657, 1.0302, 0.76036, 0.76305, 0.77614, 0.59278, 0.669, 0.68675, 0.64335, 0.21206, 0.94467, 1.1732, 0.90201, 1.0388, 0.0007922, 0.0007922, 0.0007922
65
+ 64, 0.77476, 1.3762, 0.63489, 1.016, 0.85192, 0.69076, 0.77821, 0.5807, 0.7536, 0.61446, 0.6303, 0.21521, 0.96386, 1.1797, 0.90653, 1.0335, 0.0007724, 0.0007724, 0.0007724
66
+ 65, 0.78584, 1.3556, 0.65249, 1.0199, 0.81707, 0.69957, 0.77797, 0.58489, 0.6758, 0.67871, 0.63714, 0.21037, 0.97463, 1.2075, 0.88187, 1.0483, 0.0007526, 0.0007526, 0.0007526
67
+ 66, 0.78371, 1.3522, 0.65196, 1.0249, 0.78806, 0.76157, 0.8028, 0.60219, 0.73576, 0.63454, 0.63373, 0.2189, 0.93609, 1.1737, 0.89069, 1.0309, 0.0007328, 0.0007328, 0.0007328
68
+ 67, 0.76686, 1.3415, 0.62406, 1.0132, 0.81226, 0.76305, 0.77861, 0.5989, 0.74607, 0.66079, 0.63096, 0.21574, 0.92595, 1.1605, 0.86493, 1.0239, 0.000713, 0.000713, 0.000713
69
+ 68, 0.7838, 1.3287, 0.63605, 1.0278, 0.84706, 0.73401, 0.78855, 0.60357, 0.75378, 0.65163, 0.64006, 0.21575, 0.9321, 1.1586, 0.86936, 1.0351, 0.0006932, 0.0006932, 0.0006932
70
+ 69, 0.7734, 1.3339, 0.62875, 1.0178, 0.81592, 0.76544, 0.78615, 0.59402, 0.72763, 0.6747, 0.62918, 0.20643, 0.9014, 1.1737, 0.84863, 1.0149, 0.0006734, 0.0006734, 0.0006734
71
+ 70, 0.7716, 1.3455, 0.62963, 1.0114, 0.82234, 0.7751, 0.79885, 0.60895, 0.74657, 0.67068, 0.64124, 0.21458, 0.90843, 1.1815, 0.84936, 1.0135, 0.0006536, 0.0006536, 0.0006536
72
+ 71, 0.77623, 1.3572, 0.62618, 1.016, 0.80228, 0.78313, 0.80519, 0.59977, 0.73225, 0.64659, 0.62931, 0.21762, 0.93939, 1.1806, 0.86187, 1.0307, 0.0006338, 0.0006338, 0.0006338
73
+ 72, 0.7746, 1.3545, 0.61583, 1.0166, 0.85214, 0.74699, 0.7937, 0.60451, 0.71554, 0.64659, 0.62638, 0.21118, 0.92327, 1.2036, 0.88099, 1.0418, 0.000614, 0.000614, 0.000614
74
+ 73, 0.75777, 1.3339, 0.61364, 1.0069, 0.78809, 0.7916, 0.79156, 0.60753, 0.70777, 0.67068, 0.63723, 0.22141, 0.8868, 1.1797, 0.84197, 1.0222, 0.0005942, 0.0005942, 0.0005942
75
+ 74, 0.76086, 1.3345, 0.60524, 1.0104, 0.78095, 0.78313, 0.78886, 0.59361, 0.6715, 0.69781, 0.61758, 0.21666, 0.90936, 1.2035, 0.89103, 1.0225, 0.0005744, 0.0005744, 0.0005744
76
+ 75, 0.74951, 1.3411, 0.59303, 1.0006, 0.8587, 0.73092, 0.77598, 0.60305, 0.793, 0.6747, 0.66771, 0.22076, 0.89792, 1.2117, 0.87081, 1.02, 0.0005546, 0.0005546, 0.0005546
77
+ 76, 0.74986, 1.319, 0.59404, 1.005, 0.78727, 0.75801, 0.79892, 0.60668, 0.74311, 0.66219, 0.63915, 0.21879, 0.90467, 1.2016, 0.84652, 1.0268, 0.0005348, 0.0005348, 0.0005348
78
+ 77, 0.75375, 1.3276, 0.61624, 1.0063, 0.83696, 0.73494, 0.79607, 0.61172, 0.74665, 0.65462, 0.65679, 0.22524, 0.88074, 1.1795, 0.83743, 1.012, 0.000515, 0.000515, 0.000515
79
+ 78, 0.74125, 1.3336, 0.58136, 0.9987, 0.82813, 0.77402, 0.78989, 0.61145, 0.74358, 0.66383, 0.63702, 0.21352, 0.89031, 1.1848, 0.86067, 1.0042, 0.0004952, 0.0004952, 0.0004952
80
+ 79, 0.74531, 1.3288, 0.58704, 1.0014, 0.81444, 0.75502, 0.78137, 0.60725, 0.7347, 0.62283, 0.60414, 0.2186, 0.90181, 1.2154, 0.85454, 1.0058, 0.0004754, 0.0004754, 0.0004754
81
+ 80, 0.72865, 1.2985, 0.57915, 0.99699, 0.82671, 0.7664, 0.79428, 0.61521, 0.73401, 0.6747, 0.64973, 0.22091, 0.9051, 1.1892, 0.86737, 1.0027, 0.0004556, 0.0004556, 0.0004556
82
+ 81, 0.73281, 1.3047, 0.57372, 0.99786, 0.81086, 0.77108, 0.7964, 0.6039, 0.75901, 0.6506, 0.63171, 0.21717, 0.91871, 1.1988, 0.84757, 1.0116, 0.0004358, 0.0004358, 0.0004358
83
+ 82, 0.74068, 1.3281, 0.58646, 1.0002, 0.84199, 0.74699, 0.80082, 0.617, 0.7649, 0.66637, 0.65247, 0.21951, 0.89383, 1.2033, 0.82806, 1.0118, 0.000416, 0.000416, 0.000416
84
+ 83, 0.73813, 1.3083, 0.59277, 0.99886, 0.8439, 0.75991, 0.77693, 0.592, 0.75163, 0.66667, 0.63407, 0.21517, 0.90591, 1.1895, 0.84218, 1.0219, 0.0003962, 0.0003962, 0.0003962
85
+ 84, 0.72941, 1.3105, 0.56238, 0.99984, 0.82279, 0.7751, 0.76916, 0.59229, 0.71292, 0.67068, 0.61048, 0.20796, 0.90555, 1.2076, 0.84665, 1.0183, 0.0003764, 0.0003764, 0.0003764
86
+ 85, 0.72883, 1.3158, 0.57663, 0.99482, 0.79189, 0.76707, 0.77439, 0.59759, 0.68037, 0.66678, 0.60249, 0.21633, 0.89134, 1.2018, 0.84528, 1.0094, 0.0003566, 0.0003566, 0.0003566
87
+ 86, 0.72449, 1.3109, 0.55783, 0.99309, 0.79534, 0.79598, 0.77326, 0.60682, 0.69888, 0.69906, 0.61768, 0.21736, 0.86231, 1.1882, 0.82329, 0.99572, 0.0003368, 0.0003368, 0.0003368
88
+ 87, 0.72238, 1.3054, 0.55921, 0.99136, 0.8067, 0.7751, 0.77742, 0.6023, 0.70049, 0.67068, 0.60604, 0.21335, 0.91106, 1.1929, 0.83476, 1.0148, 0.000317, 0.000317, 0.000317
89
+ 88, 0.7168, 1.309, 0.56085, 0.99748, 0.83837, 0.73092, 0.76125, 0.59309, 0.74935, 0.62651, 0.62566, 0.21001, 0.88915, 1.2018, 0.8296, 1.0207, 0.0002972, 0.0002972, 0.0002972
90
+ 89, 0.71052, 1.2849, 0.54349, 0.98833, 0.82277, 0.80321, 0.78408, 0.6134, 0.73242, 0.71486, 0.66275, 0.21916, 0.88926, 1.1979, 0.80683, 1.0166, 0.0002774, 0.0002774, 0.0002774
91
+ 90, 0.72152, 1.3193, 0.56252, 0.99119, 0.81502, 0.79116, 0.78732, 0.5993, 0.70838, 0.69076, 0.61849, 0.21816, 0.90896, 1.1972, 0.83424, 1.0291, 0.0002576, 0.0002576, 0.0002576
92
+ 91, 0.61685, 0.97693, 0.5464, 1.0198, 0.85464, 0.77108, 0.80014, 0.6185, 0.77101, 0.6988, 0.67159, 0.22302, 0.8769, 1.1872, 0.81156, 1.0204, 0.0002378, 0.0002378, 0.0002378
93
+ 92, 0.60317, 0.97622, 0.52549, 1.0213, 0.85471, 0.76707, 0.79666, 0.6244, 0.76671, 0.68675, 0.66415, 0.22843, 0.87424, 1.1961, 0.79146, 1.0177, 0.000218, 0.000218, 0.000218
94
+ 93, 0.59722, 0.9618, 0.51295, 1.0087, 0.86599, 0.80451, 0.79743, 0.61625, 0.74927, 0.69607, 0.65291, 0.22133, 0.87601, 1.2255, 0.77776, 1.0161, 0.0001982, 0.0001982, 0.0001982
95
+ 94, 0.59178, 0.95272, 0.50546, 1.0043, 0.82727, 0.7886, 0.78986, 0.61942, 0.73309, 0.67285, 0.63118, 0.2265, 0.89122, 1.2056, 0.77499, 1.0162, 0.0001784, 0.0001784, 0.0001784
96
+ 95, 0.58154, 0.95633, 0.49467, 1.002, 0.87436, 0.77108, 0.78899, 0.6167, 0.77873, 0.68675, 0.65652, 0.22273, 0.86, 1.2045, 0.78417, 0.995, 0.0001586, 0.0001586, 0.0001586
97
+ 96, 0.57114, 0.94976, 0.48028, 0.9924, 0.87875, 0.76707, 0.79465, 0.63109, 0.76234, 0.66988, 0.63988, 0.22747, 0.84841, 1.2195, 0.7671, 0.984, 0.0001388, 0.0001388, 0.0001388
98
+ 97, 0.56598, 0.94962, 0.48392, 0.99698, 0.84995, 0.79619, 0.81698, 0.63709, 0.7648, 0.67909, 0.63761, 0.22883, 0.8701, 1.2148, 0.75777, 0.99176, 0.000119, 0.000119, 0.000119
99
+ 98, 0.55909, 0.94242, 0.47324, 0.99223, 0.88104, 0.77912, 0.79965, 0.6292, 0.78324, 0.69478, 0.64955, 0.22662, 0.85489, 1.2047, 0.76824, 0.99409, 9.92e-05, 9.92e-05, 9.92e-05
100
+ 99, 0.56161, 0.94869, 0.47229, 0.99318, 0.88066, 0.7751, 0.7929, 0.62133, 0.7707, 0.67871, 0.6318, 0.2203, 0.85835, 1.2076, 0.75919, 0.99954, 7.94e-05, 7.94e-05, 7.94e-05
101
+ 100, 0.5611, 0.93852, 0.46633, 0.99139, 0.86317, 0.77108, 0.79189, 0.61958, 0.75316, 0.68623, 0.63854, 0.22455, 0.86297, 1.2085, 0.76192, 0.9995, 5.96e-05, 5.96e-05, 5.96e-05
yolov8n/results.png ADDED
yolov8n/train_batch0.jpg ADDED
yolov8n/train_batch1.jpg ADDED
yolov8n/train_batch10530.jpg ADDED
yolov8n/train_batch10531.jpg ADDED
yolov8n/train_batch10532.jpg ADDED
yolov8n/train_batch2.jpg ADDED
yolov8n/val_batch0_labels.jpg ADDED
yolov8n/val_batch0_pred.jpg ADDED
yolov8n/val_batch1_labels.jpg ADDED
yolov8n/val_batch1_pred.jpg ADDED
yolov8n/val_batch2_labels.jpg ADDED
yolov8n/val_batch2_pred.jpg ADDED
yolov8n/weights/best.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cce8b30758621622a03119677709d172f2ec1a2f0452279bda37732fcffb00af
3
+ size 6792547
yolov8n/weights/last.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bacc4ad44de5ceadbc7a9e79bbc51150fc3dd367c0c55fd58c572c402ed54226
3
+ size 6793059