|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from time import time |
|
import numpy as np |
|
import dgl.geometry |
|
|
|
def timeit(tag, t): |
|
print("{}: {}s".format(tag, time() - t)) |
|
return time() |
|
|
|
def pc_normalize(pc): |
|
l = pc.shape[0] |
|
centroid = np.mean(pc, axis=0) |
|
pc = pc - centroid |
|
m = np.max(np.sqrt(np.sum(pc**2, axis=1))) |
|
pc = pc / m |
|
return pc |
|
|
|
def square_distance(src, dst): |
|
""" |
|
Calculate Euclid distance between each two points. |
|
|
|
src^T * dst = xn * xm + yn * ym + zn * zm; |
|
sum(src^2, dim=-1) = xn*xn + yn*yn + zn*zn; |
|
sum(dst^2, dim=-1) = xm*xm + ym*ym + zm*zm; |
|
dist = (xn - xm)^2 + (yn - ym)^2 + (zn - zm)^2 |
|
= sum(src**2,dim=-1)+sum(dst**2,dim=-1)-2*src^T*dst |
|
|
|
Input: |
|
src: source points, [B, N, C] |
|
dst: target points, [B, M, C] |
|
Output: |
|
dist: per-point square distance, [B, N, M] |
|
""" |
|
B, N, _ = src.shape |
|
_, M, _ = dst.shape |
|
dist = -2 * torch.matmul(src, dst.permute(0, 2, 1)) |
|
dist += torch.sum(src ** 2, -1).view(B, N, 1) |
|
dist += torch.sum(dst ** 2, -1).view(B, 1, M) |
|
return dist |
|
|
|
|
|
def index_points(points, idx): |
|
""" |
|
|
|
Input: |
|
points: input points data, [B, N, C] |
|
idx: sample index data, [B, S] |
|
Return: |
|
new_points:, indexed points data, [B, S, C] |
|
""" |
|
device = points.device |
|
B = points.shape[0] |
|
view_shape = list(idx.shape) |
|
view_shape[1:] = [1] * (len(view_shape) - 1) |
|
repeat_shape = list(idx.shape) |
|
repeat_shape[0] = 1 |
|
batch_indices = torch.arange(B, dtype=torch.long).to(device).view(view_shape).repeat(repeat_shape) |
|
new_points = points[batch_indices, idx, :] |
|
return new_points |
|
|
|
|
|
def farthest_point_sample(xyz, npoint): |
|
""" |
|
Input: |
|
xyz: pointcloud data, [B, N, 3] |
|
npoint: number of samples |
|
Return: |
|
centroids: sampled pointcloud index, [B, npoint] |
|
""" |
|
return dgl.geometry.farthest_point_sampler(xyz, npoint) |
|
device = xyz.device |
|
B, N, C = xyz.shape |
|
centroids = torch.zeros(B, npoint, dtype=torch.long).to(device) |
|
distance = torch.ones(B, N).to(device) * 1e10 |
|
farthest = torch.randint(0, N, (B,), dtype=torch.long).to(device) |
|
batch_indices = torch.arange(B, dtype=torch.long).to(device) |
|
for i in range(npoint): |
|
centroids[:, i] = farthest |
|
centroid = xyz[batch_indices, farthest, :].view(B, 1, 3) |
|
dist = torch.sum((xyz - centroid) ** 2, -1) |
|
mask = dist < distance |
|
distance[mask] = dist[mask] |
|
farthest = torch.max(distance, -1)[1] |
|
return centroids |
|
|
|
|
|
def query_ball_point(radius, nsample, xyz, new_xyz): |
|
""" |
|
Input: |
|
radius: local region radius |
|
nsample: max sample number in local region |
|
xyz: all points, [B, N, 3] |
|
new_xyz: query points, [B, S, 3] |
|
Return: |
|
group_idx: grouped points index, [B, S, nsample] |
|
""" |
|
device = xyz.device |
|
B, N, C = xyz.shape |
|
_, S, _ = new_xyz.shape |
|
group_idx = torch.arange(N, dtype=torch.long).to(device).view(1, 1, N).repeat([B, S, 1]) |
|
sqrdists = square_distance(new_xyz, xyz) |
|
group_idx[sqrdists > radius ** 2] = N |
|
group_idx = group_idx.sort(dim=-1)[0][:, :, :nsample] |
|
group_first = group_idx[..., :1].repeat([1, 1, nsample]) |
|
mask = group_idx == N |
|
group_idx[mask] = group_first[mask] |
|
return group_idx |
|
|
|
|
|
def sample_and_group(npoint, radius, nsample, xyz, points, returnfps=False): |
|
""" |
|
Input: |
|
npoint: |
|
radius: |
|
nsample: |
|
xyz: input points position data, [B, N, 3] |
|
points: input points data, [B, N, D] |
|
Return: |
|
new_xyz: sampled points position data, [B, npoint, nsample, 3] |
|
new_points: sampled points data, [B, npoint, nsample, 3+D] |
|
""" |
|
B, N, C = xyz.shape |
|
S = npoint |
|
fps_idx = farthest_point_sample(xyz, npoint) |
|
|
|
new_xyz = index_points(xyz, fps_idx) |
|
|
|
idx = query_ball_point(radius, nsample, xyz, new_xyz) |
|
|
|
grouped_xyz = index_points(xyz, idx) |
|
|
|
grouped_xyz_norm = grouped_xyz - new_xyz.view(B, S, 1, C) |
|
|
|
|
|
if points is not None: |
|
grouped_points = index_points(points, idx) |
|
new_points = torch.cat([grouped_xyz_norm, grouped_points], dim=-1) |
|
else: |
|
new_points = grouped_xyz_norm |
|
if returnfps: |
|
return new_xyz, new_points, grouped_xyz, fps_idx |
|
else: |
|
return new_xyz, new_points |
|
|
|
|
|
def sample_and_group_all(xyz, points): |
|
""" |
|
Input: |
|
xyz: input points position data, [B, N, 3] |
|
points: input points data, [B, N, D] |
|
Return: |
|
new_xyz: sampled points position data, [B, 1, 3] |
|
new_points: sampled points data, [B, 1, N, 3+D] |
|
""" |
|
device = xyz.device |
|
B, N, C = xyz.shape |
|
new_xyz = torch.zeros(B, 1, C).to(device) |
|
grouped_xyz = xyz.view(B, 1, N, C) |
|
if points is not None: |
|
new_points = torch.cat([grouped_xyz, points.view(B, 1, N, -1)], dim=-1) |
|
else: |
|
new_points = grouped_xyz |
|
return new_xyz, new_points |
|
|
|
|
|
class PointNetSetAbstraction(nn.Module): |
|
def __init__(self, npoint, radius, nsample, in_channel, mlp, group_all): |
|
super(PointNetSetAbstraction, self).__init__() |
|
self.npoint = npoint |
|
self.radius = radius |
|
self.nsample = nsample |
|
self.mlp_convs = nn.ModuleList() |
|
self.mlp_bns = nn.ModuleList() |
|
last_channel = in_channel |
|
for out_channel in mlp: |
|
self.mlp_convs.append(nn.Conv2d(last_channel, out_channel, 1)) |
|
self.mlp_bns.append(nn.BatchNorm2d(out_channel)) |
|
last_channel = out_channel |
|
self.group_all = group_all |
|
|
|
def forward(self, xyz, points): |
|
""" |
|
Input: |
|
xyz: input points position data, [B, C, N] |
|
points: input points data, [B, D, N] |
|
Return: |
|
new_xyz: sampled points position data, [B, C, S] |
|
new_points_concat: sample points feature data, [B, D', S] |
|
""" |
|
xyz = xyz.permute(0, 2, 1) |
|
if points is not None: |
|
points = points.permute(0, 2, 1) |
|
|
|
if self.group_all: |
|
new_xyz, new_points = sample_and_group_all(xyz, points) |
|
else: |
|
new_xyz, new_points = sample_and_group(self.npoint, self.radius, self.nsample, xyz, points) |
|
|
|
|
|
new_points = new_points.permute(0, 3, 2, 1) |
|
for i, conv in enumerate(self.mlp_convs): |
|
bn = self.mlp_bns[i] |
|
new_points = F.relu(bn(conv(new_points))) |
|
|
|
new_points = torch.max(new_points, 2)[0] |
|
new_xyz = new_xyz.permute(0, 2, 1) |
|
return new_xyz, new_points |
|
|
|
|
|
class PointNetSetAbstractionMsg(nn.Module): |
|
def __init__(self, npoint, radius_list, nsample_list, in_channel, mlp_list): |
|
super(PointNetSetAbstractionMsg, self).__init__() |
|
self.npoint = npoint |
|
self.radius_list = radius_list |
|
self.nsample_list = nsample_list |
|
self.conv_blocks = nn.ModuleList() |
|
self.bn_blocks = nn.ModuleList() |
|
for i in range(len(mlp_list)): |
|
convs = nn.ModuleList() |
|
bns = nn.ModuleList() |
|
last_channel = in_channel + 3 |
|
for out_channel in mlp_list[i]: |
|
convs.append(nn.Conv2d(last_channel, out_channel, 1)) |
|
bns.append(nn.BatchNorm2d(out_channel)) |
|
last_channel = out_channel |
|
self.conv_blocks.append(convs) |
|
self.bn_blocks.append(bns) |
|
|
|
def forward(self, xyz, points): |
|
""" |
|
Input: |
|
xyz: input points position data, [B, C, N] |
|
points: input points data, [B, D, N] |
|
Return: |
|
new_xyz: sampled points position data, [B, C, S] |
|
new_points_concat: sample points feature data, [B, D', S] |
|
""" |
|
xyz = xyz.permute(0, 2, 1) |
|
if points is not None: |
|
points = points.permute(0, 2, 1) |
|
|
|
B, N, C = xyz.shape |
|
S = self.npoint |
|
new_xyz = index_points(xyz, farthest_point_sample(xyz, S)) |
|
new_points_list = [] |
|
for i, radius in enumerate(self.radius_list): |
|
K = self.nsample_list[i] |
|
group_idx = query_ball_point(radius, K, xyz, new_xyz) |
|
grouped_xyz = index_points(xyz, group_idx) |
|
grouped_xyz -= new_xyz.view(B, S, 1, C) |
|
if points is not None: |
|
grouped_points = index_points(points, group_idx) |
|
grouped_points = torch.cat([grouped_points, grouped_xyz], dim=-1) |
|
else: |
|
grouped_points = grouped_xyz |
|
|
|
grouped_points = grouped_points.permute(0, 3, 2, 1) |
|
for j in range(len(self.conv_blocks[i])): |
|
conv = self.conv_blocks[i][j] |
|
bn = self.bn_blocks[i][j] |
|
grouped_points = F.relu(bn(conv(grouped_points))) |
|
new_points = torch.max(grouped_points, 2)[0] |
|
new_points_list.append(new_points) |
|
|
|
new_xyz = new_xyz.permute(0, 2, 1) |
|
new_points_concat = torch.cat(new_points_list, dim=1) |
|
return new_xyz, new_points_concat |
|
|
|
|
|
class PointNetFeaturePropagation(nn.Module): |
|
def __init__(self, in_channel, mlp): |
|
super(PointNetFeaturePropagation, self).__init__() |
|
self.mlp_convs = nn.ModuleList() |
|
self.mlp_bns = nn.ModuleList() |
|
last_channel = in_channel |
|
for out_channel in mlp: |
|
self.mlp_convs.append(nn.Conv1d(last_channel, out_channel, 1)) |
|
self.mlp_bns.append(nn.BatchNorm1d(out_channel)) |
|
last_channel = out_channel |
|
|
|
def forward(self, xyz1, xyz2, points1, points2): |
|
""" |
|
Input: |
|
xyz1: input points position data, [B, C, N] |
|
xyz2: sampled input points position data, [B, C, S] |
|
points1: input points data, [B, D, N] |
|
points2: input points data, [B, D, S] |
|
Return: |
|
new_points: upsampled points data, [B, D', N] |
|
""" |
|
xyz1 = xyz1.permute(0, 2, 1) |
|
xyz2 = xyz2.permute(0, 2, 1) |
|
|
|
points2 = points2.permute(0, 2, 1) |
|
B, N, C = xyz1.shape |
|
_, S, _ = xyz2.shape |
|
|
|
if S == 1: |
|
interpolated_points = points2.repeat(1, N, 1) |
|
else: |
|
dists = square_distance(xyz1, xyz2) |
|
dists, idx = dists.sort(dim=-1) |
|
dists, idx = dists[:, :, :3], idx[:, :, :3] |
|
|
|
dist_recip = 1.0 / (dists + 1e-8) |
|
norm = torch.sum(dist_recip, dim=2, keepdim=True) |
|
weight = dist_recip / norm |
|
interpolated_points = torch.sum(index_points(points2, idx) * weight.view(B, N, 3, 1), dim=2) |
|
|
|
if points1 is not None: |
|
points1 = points1.permute(0, 2, 1) |
|
new_points = torch.cat([points1, interpolated_points], dim=-1) |
|
else: |
|
new_points = interpolated_points |
|
|
|
new_points = new_points.permute(0, 2, 1) |
|
for i, conv in enumerate(self.mlp_convs): |
|
bn = self.mlp_bns[i] |
|
new_points = F.relu(bn(conv(new_points))) |
|
return new_points |
|
|
|
|