Mentors4EDU commited on
Commit
d0dc5eb
·
verified ·
1 Parent(s): 29db1dc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -46
README.md CHANGED
@@ -1,47 +1,70 @@
1
- # Cloud Agents for Distributed Model Training
2
-
3
- A lightweight and horizontally scalable distributed computing system for training large language models, specifically designed for OpenPeerLLM.
4
-
5
- ## Features
6
-
7
- - Distributed tensor operations for model training
8
- - CouchDB-based coordination layer
9
- - Automatic agent discovery and load balancing
10
- - Horizontal scaling capabilities
11
- - Fault tolerance and recovery
12
- - Integration with OpenPeerAI's OpenPeerLLM
13
-
14
- ## Installation
15
-
16
- ```bash
17
- pip install -r requirements.txt
18
- ```
19
-
20
- ## Configuration
21
-
22
- 1. Set up CouchDB instance
23
- 2. Copy `.env.example` to `.env` and configure your settings
24
- 3. Start the coordinator node
25
- 4. Launch agent nodes
26
-
27
- ## Quick Start
28
-
29
- ```bash
30
- # Start coordinator
31
- python -m cloud_agents.coordinator
32
-
33
- # Start agent (on each machine)
34
- python -m cloud_agents.agent
35
- ```
36
-
37
- ## Architecture
38
-
39
- - `coordinator`: Manages job distribution and agent coordination
40
- - `agent`: Handles tensor operations and model training
41
- - `couchdb_client`: Interface for CouchDB communication
42
- - `tensor_ops`: Distributed tensor operations
43
- - `utils`: Helper functions and utilities
44
-
45
- ## License
46
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
  MIT
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - fka/awesome-chatgpt-prompts
5
+ language:
6
+ - en
7
+ metrics:
8
+ - accuracy
9
+ - code_eval
10
+ base_model:
11
+ - OpenPeerAI/OpenPeerLLM
12
+ tags:
13
+ - agent
14
+ - cloud
15
+ - computing
16
+ - distributed
17
+ - distributed-learning
18
+ - decentralized
19
+ - grid
20
+ - grid-computing
21
+ - machine-learning
22
+ - ml
23
+ ---
24
+ # Cloud Agents for Distributed Model Training
25
+
26
+ A lightweight and horizontally scalable distributed computing system for training large language models, specifically designed for OpenPeerLLM.
27
+
28
+ ## Features
29
+
30
+ - Distributed tensor operations for model training
31
+ - CouchDB-based coordination layer
32
+ - Automatic agent discovery and load balancing
33
+ - Horizontal scaling capabilities
34
+ - Fault tolerance and recovery
35
+ - Integration with OpenPeerAI's OpenPeerLLM
36
+
37
+ ## Installation
38
+
39
+ ```bash
40
+ pip install -r requirements.txt
41
+ ```
42
+
43
+ ## Configuration
44
+
45
+ 1. Set up CouchDB instance
46
+ 2. Copy `.env.example` to `.env` and configure your settings
47
+ 3. Start the coordinator node
48
+ 4. Launch agent nodes
49
+
50
+ ## Quick Start
51
+
52
+ ```bash
53
+ # Start coordinator
54
+ python -m cloud_agents.coordinator
55
+
56
+ # Start agent (on each machine)
57
+ python -m cloud_agents.agent
58
+ ```
59
+
60
+ ## Architecture
61
+
62
+ - `coordinator`: Manages job distribution and agent coordination
63
+ - `agent`: Handles tensor operations and model training
64
+ - `couchdb_client`: Interface for CouchDB communication
65
+ - `tensor_ops`: Distributed tensor operations
66
+ - `utils`: Helper functions and utilities
67
+
68
+ ## License
69
+
70
  MIT