Update README.md
Browse files
README.md
CHANGED
|
@@ -1,47 +1,70 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
-
|
| 9 |
-
-
|
| 10 |
-
|
| 11 |
-
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
##
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
MIT
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
datasets:
|
| 4 |
+
- fka/awesome-chatgpt-prompts
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
metrics:
|
| 8 |
+
- accuracy
|
| 9 |
+
- code_eval
|
| 10 |
+
base_model:
|
| 11 |
+
- OpenPeerAI/OpenPeerLLM
|
| 12 |
+
tags:
|
| 13 |
+
- agent
|
| 14 |
+
- cloud
|
| 15 |
+
- computing
|
| 16 |
+
- distributed
|
| 17 |
+
- distributed-learning
|
| 18 |
+
- decentralized
|
| 19 |
+
- grid
|
| 20 |
+
- grid-computing
|
| 21 |
+
- machine-learning
|
| 22 |
+
- ml
|
| 23 |
+
---
|
| 24 |
+
# Cloud Agents for Distributed Model Training
|
| 25 |
+
|
| 26 |
+
A lightweight and horizontally scalable distributed computing system for training large language models, specifically designed for OpenPeerLLM.
|
| 27 |
+
|
| 28 |
+
## Features
|
| 29 |
+
|
| 30 |
+
- Distributed tensor operations for model training
|
| 31 |
+
- CouchDB-based coordination layer
|
| 32 |
+
- Automatic agent discovery and load balancing
|
| 33 |
+
- Horizontal scaling capabilities
|
| 34 |
+
- Fault tolerance and recovery
|
| 35 |
+
- Integration with OpenPeerAI's OpenPeerLLM
|
| 36 |
+
|
| 37 |
+
## Installation
|
| 38 |
+
|
| 39 |
+
```bash
|
| 40 |
+
pip install -r requirements.txt
|
| 41 |
+
```
|
| 42 |
+
|
| 43 |
+
## Configuration
|
| 44 |
+
|
| 45 |
+
1. Set up CouchDB instance
|
| 46 |
+
2. Copy `.env.example` to `.env` and configure your settings
|
| 47 |
+
3. Start the coordinator node
|
| 48 |
+
4. Launch agent nodes
|
| 49 |
+
|
| 50 |
+
## Quick Start
|
| 51 |
+
|
| 52 |
+
```bash
|
| 53 |
+
# Start coordinator
|
| 54 |
+
python -m cloud_agents.coordinator
|
| 55 |
+
|
| 56 |
+
# Start agent (on each machine)
|
| 57 |
+
python -m cloud_agents.agent
|
| 58 |
+
```
|
| 59 |
+
|
| 60 |
+
## Architecture
|
| 61 |
+
|
| 62 |
+
- `coordinator`: Manages job distribution and agent coordination
|
| 63 |
+
- `agent`: Handles tensor operations and model training
|
| 64 |
+
- `couchdb_client`: Interface for CouchDB communication
|
| 65 |
+
- `tensor_ops`: Distributed tensor operations
|
| 66 |
+
- `utils`: Helper functions and utilities
|
| 67 |
+
|
| 68 |
+
## License
|
| 69 |
+
|
| 70 |
MIT
|