|
from transformers.utils import logging |
|
from transformers.configuration_utils import PretrainedConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class OpenBAConfig(PretrainedConfig): |
|
model_type = "openba" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
attribute_map = { |
|
"hidden_size": "hidden_size", |
|
"num_attention_heads": "num_heads", |
|
"num_hidden_layers": "num_layers" |
|
} |
|
|
|
def __init__( |
|
self, |
|
vocab_size=32128, |
|
hidden_size=512, |
|
kv_channels=64, |
|
ffn_hidden_size=2048, |
|
num_layers=12, |
|
num_decoder_layers=None, |
|
hidden_dropout=0.1, |
|
attention_dropout=0.1, |
|
num_heads=8, |
|
is_encoder_decoder=True, |
|
use_cache=True, |
|
initializer_factor=1.0, |
|
pad_token_id=0, |
|
eos_token_id=1, |
|
decoder_start_token_id=0, |
|
add_qkv_bias=False, |
|
add_ffn_bias=False, |
|
add_lm_head_bias=False, |
|
max_seq_length=1024, |
|
decoder_max_seq_length=256, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.kv_channels = kv_channels |
|
self.ffn_hidden_size = ffn_hidden_size |
|
self.num_layers = num_layers |
|
self.num_decoder_layers = ( |
|
num_decoder_layers if num_decoder_layers is not None else self.num_layers |
|
) |
|
self.hidden_dropout = hidden_dropout |
|
self.attention_dropout = attention_dropout |
|
self.initializer_factor = initializer_factor |
|
self.num_heads = num_heads |
|
self.add_qkv_bias = add_qkv_bias |
|
self.add_ffn_bias = add_ffn_bias |
|
self.add_lm_head_bias = add_lm_head_bias |
|
self.max_seq_length = max_seq_length |
|
self.decoder_max_seq_length = decoder_max_seq_length |
|
self.use_cache = use_cache |
|
|
|
super().__init__( |
|
pad_token_id=pad_token_id, |
|
eos_token_id=eos_token_id, |
|
decoder_start_token_id=decoder_start_token_id, |
|
is_encoder_decoder=is_encoder_decoder, |
|
**kwargs, |
|
) |