Upload all files from current directory
Browse files- README.md +57 -0
- config.json +120 -0
- examples/m1.wav +0 -0
- preprocessor_config.json +13 -0
- pytorch_model.bin +3 -0
README.md
CHANGED
|
@@ -1,3 +1,60 @@
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
---
|
| 4 |
+
|
| 5 |
+
# **Introduction**
|
| 6 |
+
|
| 7 |
+
**`XY-Tokenizer`** is a speech codec that simultaneously models both semantic and acoustic aspects of speech, converting audio into discrete tokens and decoding them back to high-quality audio. It achieves efficient speech representation at only 1kbps with RVQ8 quantization at 12.5Hz frame rate.
|
| 8 |
+
|
| 9 |
+
- **Paper:** [Read on arXiv](https://arxiv.org/abs/2506.23325)
|
| 10 |
+
- **Source Code:**
|
| 11 |
+
- [GitHub Repo](https://github.com/OpenMOSS/MOSS-TTSD/tree/main/XY_Tokenizer)
|
| 12 |
+
- [Hugging Face Repo](https://huggingface.co/spaces/fnlp/MOSS-TTSD/tree/main/XY_Tokenizer)
|
| 13 |
+
|
| 14 |
+
## 📚 Related Project: **[MOSS-TTSD](https://huggingface.co/fnlp/MOSS-TTSD-v0.5)**
|
| 15 |
+
|
| 16 |
+
**`XY-Tokenizer`** serves as the underlying neural codec for **`MOSS-TTSD`**, our 1.7B Audio Language Model. \
|
| 17 |
+
Explore **`MOSS-TTSD`** for advanced text-to-speech and other audio generation tasks on [GitHub](https://github.com/OpenMOSS/MOSS-TTSD), [Blog](http://www.open-moss.com/en/moss-ttsd/), [博客](https://www.open-moss.com/cn/moss-ttsd/), and [Space Demo](https://huggingface.co/spaces/fnlp/MOSS-TTSD).
|
| 18 |
+
|
| 19 |
+
## ✨ Features
|
| 20 |
+
|
| 21 |
+
- **Dual-channel modeling**: Simultaneously captures semantic meaning and acoustic details
|
| 22 |
+
- **Efficient representation**: 1kbps bitrate with RVQ8 quantization at 12.5Hz
|
| 23 |
+
- **High-quality audio tokenization**: Convert speech to discrete tokens and back with minimal quality loss
|
| 24 |
+
- **Long audio support**: Process audio files longer than 30 seconds using chunking with overlap
|
| 25 |
+
- **Batch processing**: Efficiently process multiple audio files in batches
|
| 26 |
+
- **24kHz output**: Generate high-quality 24kHz audio output
|
| 27 |
+
|
| 28 |
+
## 💻 Quick Start
|
| 29 |
+
|
| 30 |
+
Here's how to use **`XY-Tokenizer`** with `transformers` to encode an audio file into discrete tokens and decode it back into a waveform.
|
| 31 |
+
|
| 32 |
+
```python
|
| 33 |
+
import torchaudio
|
| 34 |
+
from transformers import AutoFeatureExtractor, AutoModel
|
| 35 |
+
|
| 36 |
+
# 1. Load the feature extractor and the codec model
|
| 37 |
+
model_id = "fnlp/XY-Tokenizer-TTSD-V0-hf"
|
| 38 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(model_id, trust_remote_code=True)
|
| 39 |
+
codec = AutoModel.from_pretrained(model_id, trust_remote_code=True).eval().to("cuda")
|
| 40 |
+
|
| 41 |
+
# 2. Load and preprocess the audio
|
| 42 |
+
# The model expects a 16kHz sample rate.
|
| 43 |
+
wav_form, sampling_rate = torchaudio.load("examples/m1.wav")
|
| 44 |
+
if sampling_rate != 16000:
|
| 45 |
+
wav_form = torchaudio.functional.resample(wav_form, orig_freq=sampling_rate, new_freq=16000)
|
| 46 |
+
|
| 47 |
+
# 3. Encode the audio into discrete codes
|
| 48 |
+
input_features = feature_extractor(wav_form, sampling_rate=16000, return_attention_mask=True, return_tensors="pt")
|
| 49 |
+
# The 'code' dictionary contains the discrete audio codes
|
| 50 |
+
code = codec.encode(input_features)
|
| 51 |
+
print(code)
|
| 52 |
+
|
| 53 |
+
# 4. Decode the codes back to an audio waveform
|
| 54 |
+
# The output is high-quality 24kHz audio.
|
| 55 |
+
output_wav = codec.decode(code["audio_codes"], overlap_seconds=10)
|
| 56 |
+
|
| 57 |
+
# 5. Save the reconstructed audio
|
| 58 |
+
for i, audio in enumerate(output_wav["audio_values"]):
|
| 59 |
+
torchaudio.save(f"audio_{i}.wav", audio.cpu(), 24000)
|
| 60 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_type": "xy_tokenizer",
|
| 3 |
+
"input_sample_rate": 16000,
|
| 4 |
+
"output_sample_rate": 24000,
|
| 5 |
+
"encoder_downsample_rate": 1280,
|
| 6 |
+
"decoder_upsample_rate": 1920,
|
| 7 |
+
"code_dim": 3072,
|
| 8 |
+
"params": {
|
| 9 |
+
"feature_extractor_kwargs": {
|
| 10 |
+
"chunk_length": 30,
|
| 11 |
+
"feature_size": 80,
|
| 12 |
+
"hop_length": 160,
|
| 13 |
+
"n_fft": 400,
|
| 14 |
+
"n_samples": 480000,
|
| 15 |
+
"nb_max_frames": 3000,
|
| 16 |
+
"padding_side": "right",
|
| 17 |
+
"padding_value": 0.0,
|
| 18 |
+
"sampling_rate": 16000,
|
| 19 |
+
"return_attention_mask": true,
|
| 20 |
+
"return_tensors": "pt"
|
| 21 |
+
},
|
| 22 |
+
"semantic_encoder_kwargs": {
|
| 23 |
+
"num_mel_bins": 80,
|
| 24 |
+
"sampling_rate": 16000,
|
| 25 |
+
"hop_length": 160,
|
| 26 |
+
"stride_size": 2,
|
| 27 |
+
"kernel_size": 3,
|
| 28 |
+
"d_model": 768,
|
| 29 |
+
"scale_embedding": false,
|
| 30 |
+
"max_audio_seconds": 30,
|
| 31 |
+
"encoder_layers": 12,
|
| 32 |
+
"encoder_attention_heads": 12,
|
| 33 |
+
"encoder_ffn_dim": 3072,
|
| 34 |
+
"activation_function": "gelu"
|
| 35 |
+
},
|
| 36 |
+
"semantic_encoder_adapter_kwargs": {
|
| 37 |
+
"input_dim": 768,
|
| 38 |
+
"output_dim": 768,
|
| 39 |
+
"d_model": 768,
|
| 40 |
+
"max_source_positions": 1500,
|
| 41 |
+
"encoder_layers": 4,
|
| 42 |
+
"encoder_attention_heads": 12,
|
| 43 |
+
"encoder_ffn_dim": 3072
|
| 44 |
+
},
|
| 45 |
+
"acoustic_encoder_kwargs": {
|
| 46 |
+
"num_mel_bins": 80,
|
| 47 |
+
"sampling_rate": 16000,
|
| 48 |
+
"hop_length": 160,
|
| 49 |
+
"stride_size": 2,
|
| 50 |
+
"kernel_size": 3,
|
| 51 |
+
"d_model": 768,
|
| 52 |
+
"scale_embedding": false,
|
| 53 |
+
"max_audio_seconds": 30,
|
| 54 |
+
"encoder_layers": 12,
|
| 55 |
+
"encoder_attention_heads": 12,
|
| 56 |
+
"encoder_ffn_dim": 3072,
|
| 57 |
+
"activation_function": "gelu"
|
| 58 |
+
},
|
| 59 |
+
"pre_rvq_adapter_kwargs": {
|
| 60 |
+
"input_dim": 1536,
|
| 61 |
+
"output_dim": 768,
|
| 62 |
+
"d_model": 768,
|
| 63 |
+
"max_source_positions": 1500,
|
| 64 |
+
"encoder_layers": 4,
|
| 65 |
+
"encoder_attention_heads": 12,
|
| 66 |
+
"encoder_ffn_dim": 3072
|
| 67 |
+
},
|
| 68 |
+
"downsample_kwargs": {
|
| 69 |
+
"d_model": 768,
|
| 70 |
+
"avg_pooler": 4
|
| 71 |
+
},
|
| 72 |
+
"quantizer_kwargs": {
|
| 73 |
+
"input_dim": 3072,
|
| 74 |
+
"rvq_dim": 512,
|
| 75 |
+
"output_dim": 3072,
|
| 76 |
+
"num_quantizers": 8,
|
| 77 |
+
"codebook_size": 1024,
|
| 78 |
+
"codebook_dim": 512,
|
| 79 |
+
"quantizer_dropout": 0.0
|
| 80 |
+
},
|
| 81 |
+
"post_rvq_adapter_kwargs": {
|
| 82 |
+
"input_dim": 3072,
|
| 83 |
+
"output_dim": 3072,
|
| 84 |
+
"d_model": 768,
|
| 85 |
+
"max_source_positions": 375,
|
| 86 |
+
"encoder_layers": 4,
|
| 87 |
+
"encoder_attention_heads": 12,
|
| 88 |
+
"encoder_ffn_dim": 3072
|
| 89 |
+
},
|
| 90 |
+
"upsample_kwargs": {
|
| 91 |
+
"d_model": 768,
|
| 92 |
+
"stride": 4
|
| 93 |
+
},
|
| 94 |
+
"acoustic_decoder_kwargs": {
|
| 95 |
+
"num_mel_bins": 80,
|
| 96 |
+
"sampling_rate": 16000,
|
| 97 |
+
"hop_length": 160,
|
| 98 |
+
"stride_size": 2,
|
| 99 |
+
"kernel_size": 3,
|
| 100 |
+
"d_model": 768,
|
| 101 |
+
"scale_embedding": false,
|
| 102 |
+
"max_audio_seconds": 30,
|
| 103 |
+
"decoder_layers": 12,
|
| 104 |
+
"decoder_attention_heads": 12,
|
| 105 |
+
"decoder_ffn_dim": 3072,
|
| 106 |
+
"activation_function": "gelu"
|
| 107 |
+
},
|
| 108 |
+
"vocos_kwargs": {
|
| 109 |
+
"input_channels": 80,
|
| 110 |
+
"dim": 512,
|
| 111 |
+
"intermediate_dim": 4096,
|
| 112 |
+
"num_layers": 30,
|
| 113 |
+
"n_fft": 960,
|
| 114 |
+
"hop_size": 240,
|
| 115 |
+
"padding": "same"
|
| 116 |
+
}
|
| 117 |
+
},
|
| 118 |
+
"torch_dtype": "float32",
|
| 119 |
+
"transformers_version": "4.51.0"
|
| 120 |
+
}
|
examples/m1.wav
ADDED
|
Binary file (64.8 kB). View file
|
|
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"chunk_length": 30,
|
| 3 |
+
"feature_size": 80,
|
| 4 |
+
"hop_length": 160,
|
| 5 |
+
"n_fft": 400,
|
| 6 |
+
"n_samples": 480000,
|
| 7 |
+
"nb_max_frames": 3000,
|
| 8 |
+
"padding_side": "right",
|
| 9 |
+
"padding_value": 0.0,
|
| 10 |
+
"sampling_rate": 16000,
|
| 11 |
+
"return_attention_mask": true,
|
| 12 |
+
"return_tensors": "pt"
|
| 13 |
+
}
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fafbaf4ba0e6095be842230c4bd16ecf6d193b250718a5775f1ac7aa528d9110
|
| 3 |
+
size 2137279502
|