|
|
import json |
|
|
import numpy as np |
|
|
import pandas as pd |
|
|
import tensorflow as tf |
|
|
from tensorflow.keras import layers |
|
|
import sentencepiece as spm |
|
|
import requests |
|
|
|
|
|
|
|
|
sp = spm.SentencePieceProcessor() |
|
|
sp.load("ko_unigram.model") |
|
|
|
|
|
|
|
|
pad_id = sp.piece_to_id("<pad>") if sp.piece_to_id("<pad>") != -1 else 0 |
|
|
start_id = sp.piece_to_id("<start>") |
|
|
sep_id = sp.piece_to_id("<sep>") |
|
|
end_id = sp.piece_to_id("<end>") |
|
|
unk_id = sp.piece_to_id("<unk>") |
|
|
|
|
|
vocab_size = sp.get_piece_size() |
|
|
print(f"β
Vocabulary size: {vocab_size}") |
|
|
|
|
|
|
|
|
def text_to_ids(text): |
|
|
return sp.encode(text, out_type=int) |
|
|
|
|
|
def ids_to_text(ids): |
|
|
return sp.decode(ids) |
|
|
|
|
|
max_len = 230 |
|
|
batch_size = 128 |
|
|
|
|
|
class Lo(layers.Layer): |
|
|
def __init__(self, d_model): |
|
|
super().__init__() |
|
|
|
|
|
self.proj = layers.Dense(d_model, use_bias=True, dtype='float32') |
|
|
self.p = layers.Dense(96, use_bias=True, dtype='float32') |
|
|
self._out_dtype = 'float32' |
|
|
|
|
|
def call(self, x): |
|
|
|
|
|
x_f32 = tf.cast(x, tf.float32) |
|
|
x = self.proj(x_f32) |
|
|
x = tf.nn.gelu(x) |
|
|
x = self.p(x) |
|
|
|
|
|
return tf.cast(x, self._out_dtype) |
|
|
|
|
|
class LoSoU(layers.Layer): |
|
|
""" |
|
|
μμ νλ LoSoU λ μ΄μ΄ (λμ alpha μ¬μ©) |
|
|
- alpha κ°μ μ
λ ₯μ λ°λΌ λμ μΌλ‘ κ³μ°: alpha = sigmoid(Linear(x)) |
|
|
- λμ ν© λμ μ§μμ΄λνκ· (EMA) μ¬μ© (alpha: smoothing factor) |
|
|
- λ΄λΆ κ³μ°μ float32λ‘ μν (TPU bfloat16 μμ μ± ν₯μ) |
|
|
- EMA κ²°κ³Ό ν΄λ¦¬ν λ° μμ epsilon μ μ© |
|
|
- μμ ν split μ²λ¦¬ (μ§μ μ°¨μ κ°μ ; μλλΌλ©΄ λ§μ§λ§ μ°¨μ pad νμ) |
|
|
""" |
|
|
def __init__(self, d_model, clip_value=5.0, eps=1e-6): |
|
|
super().__init__() |
|
|
|
|
|
self.d_model = d_model |
|
|
self.clip_value = float(clip_value) |
|
|
self.eps = float(eps) |
|
|
|
|
|
|
|
|
self.Q = layers.Dense(96, dtype='float32') |
|
|
self.K = layers.Dense(96, dtype='float32') |
|
|
self.V = layers.Dense(96, activation='gelu', dtype='float32') |
|
|
self.proj = layers.Dense(d_model, use_bias=True, dtype='float32') |
|
|
self.norm = layers.LayerNormalization(epsilon=1e-5, dtype='float32') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.alpha_linear = layers.Dense(1, activation='sigmoid', dtype='float32') |
|
|
|
|
|
def _ema_over_time(self, score, alpha_dynamic): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
seq = tf.transpose(score, perm=[1, 0, 2]) |
|
|
alpha_seq = tf.transpose(alpha_dynamic, perm=[1, 0, 2]) |
|
|
|
|
|
def step(prev_ema, inputs): |
|
|
x_t, alpha_t = inputs |
|
|
|
|
|
new = alpha_t * x_t + (1.0 - alpha_t) * prev_ema |
|
|
return new |
|
|
|
|
|
|
|
|
init = seq[0] |
|
|
first_alpha = alpha_seq[0] |
|
|
|
|
|
|
|
|
remaining_seq = seq[1:] |
|
|
remaining_alpha = alpha_seq[1:] |
|
|
|
|
|
|
|
|
elems = (remaining_seq, remaining_alpha) |
|
|
|
|
|
ema_seq = tf.scan(fn=step, elems=elems, initializer=init) |
|
|
|
|
|
ema_seq = tf.concat([tf.expand_dims(init, 0), ema_seq], axis=0) |
|
|
|
|
|
|
|
|
ema = tf.transpose(ema_seq, perm=[1, 0, 2]) |
|
|
return ema |
|
|
|
|
|
def call(self, x): |
|
|
|
|
|
|
|
|
x_f32 = tf.cast(x, tf.float32) |
|
|
residual = x_f32 |
|
|
|
|
|
|
|
|
q = self.Q(x_f32) |
|
|
k = self.K(x_f32) |
|
|
V = tf.cast(self.V(x), tf.float32) |
|
|
|
|
|
|
|
|
g_q = tf.nn.sigmoid(q) |
|
|
g_k = tf.nn.tanh(k) |
|
|
|
|
|
|
|
|
score = g_q * g_k |
|
|
|
|
|
|
|
|
alpha_dynamic = self.alpha_linear(x_f32) * 0.8 + 0.1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
score_ema = self._ema_over_time(score, alpha_dynamic) |
|
|
|
|
|
|
|
|
mean_last = tf.reduce_mean(score_ema, axis=-1, keepdims=True) |
|
|
denom = tf.maximum(mean_last, self.eps) |
|
|
score_norm = score_ema / denom |
|
|
|
|
|
|
|
|
score_clipped = tf.clip_by_value(score_norm, -self.clip_value, self.clip_value) |
|
|
|
|
|
|
|
|
x_comb = score_clipped * V |
|
|
|
|
|
out = self.proj(x_comb) |
|
|
out = self.norm(out) |
|
|
|
|
|
|
|
|
return tf.cast(out, x.dtype) |
|
|
|
|
|
class Block(layers.Layer): |
|
|
def __init__(self, d_model, hyper_n): |
|
|
super().__init__() |
|
|
self.losou = [LoSoU(d_model) for _ in range(hyper_n)] |
|
|
|
|
|
def call(self, x): |
|
|
for losou in self.losou: |
|
|
x = losou(x) |
|
|
return x |
|
|
|
|
|
class ReLaM(tf.keras.Model): |
|
|
def __init__(self, vocab_size, max_seq_len, d_model, n_layers, dropout_rate=0.1): |
|
|
super().__init__() |
|
|
self.token_embedding = layers.Embedding(vocab_size, 128) |
|
|
self.pos_embedding = layers.Embedding(max_seq_len, 128) |
|
|
self.blocks = [Block(d_model, hyper_n=1) for _ in range(n_layers)] |
|
|
self.proj = layers.Dense(128) |
|
|
self.ln_f = layers.LayerNormalization(epsilon=1e-5, dtype="float32") |
|
|
|
|
|
def call(self, x, training=False): |
|
|
batch_size, seq_len = tf.shape(x)[0], tf.shape(x)[1] |
|
|
positions = tf.range(seq_len)[tf.newaxis, :] |
|
|
x = self.token_embedding(x) + self.pos_embedding(positions) |
|
|
for block in self.blocks: |
|
|
x = block(x) |
|
|
x = self.proj(x) |
|
|
x = self.ln_f(x) |
|
|
embedding_matrix = tf.cast(self.token_embedding.embeddings, x.dtype) |
|
|
logits = tf.matmul(x, embedding_matrix, transpose_b=True) |
|
|
return tf.cast(logits, tf.float32) |
|
|
|
|
|
|
|
|
model = ReLaM( |
|
|
vocab_size=vocab_size, |
|
|
max_seq_len=max_len, |
|
|
d_model=256, |
|
|
n_layers=1 |
|
|
) |
|
|
|
|
|
dummy_input = tf.zeros((1, max_len), dtype=tf.int32) |
|
|
_ = model(dummy_input) |
|
|
model.load_weights('/content/Cobra.weights.h5') |
|
|
print("λͺ¨λΈ κ°μ€μΉ λ‘λ μλ£!") |
|
|
|
|
|
def generate_text_topp(model, prompt, max_len=100, max_gen=98, p=0.9, temperature=0.8, min_len=30): |
|
|
model_input = text_to_ids(f"<start> {prompt} <sep>") |
|
|
model_input = model_input[:max_len] |
|
|
generated = list(model_input) |
|
|
for step in range(max_gen): |
|
|
if len(generated) > max_len: |
|
|
input_seq = generated[-max_len:] |
|
|
else: |
|
|
input_seq = generated |
|
|
input_padded = np.pad(input_seq, (0, max_len - len(input_seq)), constant_values=pad_id) |
|
|
input_tensor = tf.convert_to_tensor([input_padded]) |
|
|
logits = model(input_tensor, training=False) |
|
|
next_token_logits = logits[0, len(input_seq) - 1].numpy() |
|
|
next_token_logits[end_id] -= 5.0 |
|
|
next_token_logits[pad_id] -= 10.0 |
|
|
probs = tf.nn.softmax(next_token_logits / temperature).numpy() |
|
|
sorted_indices = np.argsort(probs)[::-1] |
|
|
sorted_probs = probs[sorted_indices] |
|
|
cumulative_probs = np.cumsum(sorted_probs) |
|
|
cutoff = np.searchsorted(cumulative_probs, p) |
|
|
top_indices = sorted_indices[:cutoff + 1] |
|
|
top_probs = sorted_probs[:cutoff + 1] |
|
|
top_probs /= np.sum(top_probs) |
|
|
next_token_id = np.random.choice(top_indices, p=top_probs) |
|
|
if next_token_id == end_id and len(generated) >= min_len: |
|
|
break |
|
|
generated.append(int(next_token_id)) |
|
|
return ids_to_text(generated) |
|
|
|
|
|
print("\n\n===== μμ± κ²°κ³Ό =====") |
|
|
print(generate_text_topp(model, "μ κ° μ΄λ°κ° λ²μ€λ₯Ό νμΌ ν΄μ μ€λΉ μ’ ν΄μΌκ² μ΄μ. μ¬λ―Έμλ λνμμ΅λλ€!", p=0.8)) |