Create HyperConv1D.py
Browse files- HyperConv1D.py +64 -0
HyperConv1D.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
class HyperConv1D(layers.Layer):
|
| 2 |
+
def __init__(self, d_model, k=7, mem_size=64, hyper_dim=128, dropout=0.0):
|
| 3 |
+
super().__init__()
|
| 4 |
+
assert k % 2 == 1
|
| 5 |
+
self.k = k
|
| 6 |
+
self.d_model = d_model
|
| 7 |
+
self.mem_size = mem_size
|
| 8 |
+
|
| 9 |
+
# Input projection
|
| 10 |
+
self.input_proj = layers.Dense(d_model, name="input_proj")
|
| 11 |
+
|
| 12 |
+
# Local depthwise conv
|
| 13 |
+
self.local_conv = layers.DepthwiseConv1D(kernel_size=k, padding='same', activation='silu')
|
| 14 |
+
self.local_proj = layers.Dense(d_model, name="local_proj")
|
| 15 |
+
|
| 16 |
+
# Hypernetwork: global -> scale vector
|
| 17 |
+
self.hyper = tf.keras.Sequential([
|
| 18 |
+
layers.Dense(hyper_dim, activation='gelu'),
|
| 19 |
+
layers.Dense(d_model)
|
| 20 |
+
], name="hyper")
|
| 21 |
+
|
| 22 |
+
# Associative memory
|
| 23 |
+
self.mem_keys = self.add_weight((mem_size, d_model), initializer='glorot_uniform', trainable=True)
|
| 24 |
+
self.mem_vals = self.add_weight((mem_size, d_model), initializer='glorot_uniform', trainable=True)
|
| 25 |
+
self.mem_proj = layers.Dense(d_model)
|
| 26 |
+
|
| 27 |
+
self.norm = layers.LayerNormalization()
|
| 28 |
+
self.attn_pool = layers.Dense(1)
|
| 29 |
+
|
| 30 |
+
def call(self, x):
|
| 31 |
+
x_in = x
|
| 32 |
+
x_dtype = x.dtype # 입력 dtype 기억
|
| 33 |
+
|
| 34 |
+
# 1) input projection
|
| 35 |
+
x_proj = self.input_proj(x)
|
| 36 |
+
# memory와 연산 위해 dtype 통일
|
| 37 |
+
mem_dtype = self.mem_keys.dtype
|
| 38 |
+
x_proj = tf.cast(x_proj, mem_dtype)
|
| 39 |
+
|
| 40 |
+
# 2) local conv
|
| 41 |
+
out_local = self.local_conv(x_proj)
|
| 42 |
+
# hypernetwork scaling
|
| 43 |
+
global_z = self.attn_pool(x_proj)
|
| 44 |
+
global_z = tf.nn.softmax(global_z, axis=1)
|
| 45 |
+
global_z = tf.reduce_sum(x_proj * global_z, axis=1)
|
| 46 |
+
|
| 47 |
+
scale = tf.expand_dims(tf.nn.sigmoid(self.hyper(global_z)), 1)
|
| 48 |
+
out_local = out_local * scale
|
| 49 |
+
out_local = self.local_proj(out_local)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
# 3) associative memory
|
| 53 |
+
sims = tf.matmul(x_proj, self.mem_keys, transpose_b=True) / tf.math.sqrt(tf.cast(self.d_model, mem_dtype))
|
| 54 |
+
attn = tf.nn.softmax(sims, axis=-1)
|
| 55 |
+
mem_read = tf.matmul(attn, self.mem_vals)
|
| 56 |
+
mem_read = self.mem_proj(mem_read)
|
| 57 |
+
|
| 58 |
+
# 4) fuse & residual
|
| 59 |
+
out = out_local + mem_read
|
| 60 |
+
out = self.norm(x_proj + out)
|
| 61 |
+
out = tf.nn.silu(out)
|
| 62 |
+
|
| 63 |
+
# 최종 출력 dtype 원래 입력 dtype으로 캐스트
|
| 64 |
+
return tf.cast(out, x_dtype)
|