mihaimasala
commited on
Upload 9 files
Browse files- README.md +636 -3
- added_tokens.json +5 -0
- config.json +27 -0
- generation_config.json +6 -0
- pytorch_model.bin.index.json +298 -0
- special_tokens_map.json +11 -0
- tokenizer.model +3 -0
- tokenizer_config.json +48 -0
- train_params.yaml +35 -0
README.md
CHANGED
@@ -1,3 +1,636 @@
|
|
1 |
-
---
|
2 |
-
license: llama2
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: llama2
|
3 |
+
language:
|
4 |
+
- ro
|
5 |
+
base_model: meta-llama/Llama-2-7b-hf
|
6 |
+
model-index:
|
7 |
+
- name: OpenLLM-Ro/RoLlama2-7b-Base-2024-05-14
|
8 |
+
results:
|
9 |
+
- task:
|
10 |
+
type: text-generation
|
11 |
+
dataset:
|
12 |
+
name: Romanian_Academic_Benchmarks
|
13 |
+
type: Romanian_Academic_Benchmarks
|
14 |
+
metrics:
|
15 |
+
- name: Average accuracy
|
16 |
+
type: accuracy
|
17 |
+
value: 38.03
|
18 |
+
- task:
|
19 |
+
type: text-generation
|
20 |
+
dataset:
|
21 |
+
name: OpenLLM-Ro/ro_arc_challenge
|
22 |
+
type: OpenLLM-Ro/ro_arc_challenge
|
23 |
+
metrics:
|
24 |
+
- name: Average accuracy
|
25 |
+
type: accuracy
|
26 |
+
value: 37.95
|
27 |
+
- task:
|
28 |
+
type: text-generation
|
29 |
+
dataset:
|
30 |
+
name: OpenLLM-Ro/ro_mmlu
|
31 |
+
type: OpenLLM-Ro/ro_mmlu
|
32 |
+
metrics:
|
33 |
+
- name: Average accuracy
|
34 |
+
type: accuracy
|
35 |
+
value: 27.22
|
36 |
+
- task:
|
37 |
+
type: text-generation
|
38 |
+
dataset:
|
39 |
+
name: OpenLLM-Ro/ro_winogrande
|
40 |
+
type: OpenLLM-Ro/ro_winogrande
|
41 |
+
metrics:
|
42 |
+
- name: Average accuracy
|
43 |
+
type: accuracy
|
44 |
+
value: 59.29
|
45 |
+
- task:
|
46 |
+
type: text-generation
|
47 |
+
dataset:
|
48 |
+
name: OpenLLM-Ro/ro_hellaswag
|
49 |
+
type: OpenLLM-Ro/ro_hellaswag
|
50 |
+
metrics:
|
51 |
+
- name: Average accuracy
|
52 |
+
type: accuracy
|
53 |
+
value: 57.22
|
54 |
+
- task:
|
55 |
+
type: text-generation
|
56 |
+
dataset:
|
57 |
+
name: OpenLLM-Ro/ro_gsm8k
|
58 |
+
type: OpenLLM-Ro/ro_gsm8k
|
59 |
+
metrics:
|
60 |
+
- name: Average accuracy
|
61 |
+
type: accuracy
|
62 |
+
value: 2.53
|
63 |
+
- task:
|
64 |
+
type: text-generation
|
65 |
+
dataset:
|
66 |
+
name: OpenLLM-Ro/ro_truthfulqa
|
67 |
+
type: OpenLLM-Ro/ro_truthfulqa
|
68 |
+
metrics:
|
69 |
+
- name: Average accuracy
|
70 |
+
type: accuracy
|
71 |
+
value: 44
|
72 |
+
- task:
|
73 |
+
type: text-generation
|
74 |
+
dataset:
|
75 |
+
name: LaRoSeDa_binary
|
76 |
+
type: LaRoSeDa_binary
|
77 |
+
metrics:
|
78 |
+
- name: Average macro-f1
|
79 |
+
type: macro-f1
|
80 |
+
value: 83.25
|
81 |
+
- task:
|
82 |
+
type: text-generation
|
83 |
+
dataset:
|
84 |
+
name: LaRoSeDa_multiclass
|
85 |
+
type: LaRoSeDa_multiclass
|
86 |
+
metrics:
|
87 |
+
- name: Average macro-f1
|
88 |
+
type: macro-f1
|
89 |
+
value: 61.04
|
90 |
+
- task:
|
91 |
+
type: text-generation
|
92 |
+
dataset:
|
93 |
+
name: LaRoSeDa_binary_finetuned
|
94 |
+
type: LaRoSeDa_binary_finetuned
|
95 |
+
metrics:
|
96 |
+
- name: Average macro-f1
|
97 |
+
type: macro-f1
|
98 |
+
value: 98.97
|
99 |
+
- task:
|
100 |
+
type: text-generation
|
101 |
+
dataset:
|
102 |
+
name: LaRoSeDa_multiclass_finetuned
|
103 |
+
type: LaRoSeDa_multiclass_finetuned
|
104 |
+
metrics:
|
105 |
+
- name: Average macro-f1
|
106 |
+
type: macro-f1
|
107 |
+
value: 87.72
|
108 |
+
- task:
|
109 |
+
type: text-generation
|
110 |
+
dataset:
|
111 |
+
name: WMT_EN-RO
|
112 |
+
type: WMT_EN-RO
|
113 |
+
metrics:
|
114 |
+
- name: Average bleu
|
115 |
+
type: bleu
|
116 |
+
value: 10.01
|
117 |
+
- task:
|
118 |
+
type: text-generation
|
119 |
+
dataset:
|
120 |
+
name: WMT_RO-EN
|
121 |
+
type: WMT_RO-EN
|
122 |
+
metrics:
|
123 |
+
- name: Average bleu
|
124 |
+
type: bleu
|
125 |
+
value: 13.03
|
126 |
+
- task:
|
127 |
+
type: text-generation
|
128 |
+
dataset:
|
129 |
+
name: WMT_EN-RO_finetuned
|
130 |
+
type: WMT_EN-RO_finetuned
|
131 |
+
metrics:
|
132 |
+
- name: Average bleu
|
133 |
+
type: bleu
|
134 |
+
value: 27.85
|
135 |
+
- task:
|
136 |
+
type: text-generation
|
137 |
+
dataset:
|
138 |
+
name: WMT_RO-EN_finetuned
|
139 |
+
type: WMT_RO-EN_finetuned
|
140 |
+
metrics:
|
141 |
+
- name: Average bleu
|
142 |
+
type: bleu
|
143 |
+
value: 39.3
|
144 |
+
- task:
|
145 |
+
type: text-generation
|
146 |
+
dataset:
|
147 |
+
name: XQuAD
|
148 |
+
type: XQuAD
|
149 |
+
metrics:
|
150 |
+
- name: Average exact_match
|
151 |
+
type: exact_match
|
152 |
+
value: 30.15
|
153 |
+
- task:
|
154 |
+
type: text-generation
|
155 |
+
dataset:
|
156 |
+
name: XQuAD
|
157 |
+
type: XQuAD
|
158 |
+
metrics:
|
159 |
+
- name: Average f1
|
160 |
+
type: f1
|
161 |
+
value: 47.03
|
162 |
+
- task:
|
163 |
+
type: text-generation
|
164 |
+
dataset:
|
165 |
+
name: XQuAD_finetuned
|
166 |
+
type: XQuAD_finetuned
|
167 |
+
metrics:
|
168 |
+
- name: Average exact_match
|
169 |
+
type: exact_match
|
170 |
+
value: 67.06
|
171 |
+
- task:
|
172 |
+
type: text-generation
|
173 |
+
dataset:
|
174 |
+
name: XQuAD_finetuned
|
175 |
+
type: XQuAD_finetuned
|
176 |
+
metrics:
|
177 |
+
- name: Average f1
|
178 |
+
type: f1
|
179 |
+
value: 79.96
|
180 |
+
- task:
|
181 |
+
type: text-generation
|
182 |
+
dataset:
|
183 |
+
name: STS
|
184 |
+
type: STS
|
185 |
+
metrics:
|
186 |
+
- name: Average spearman
|
187 |
+
type: spearman
|
188 |
+
value: 7.89
|
189 |
+
- task:
|
190 |
+
type: text-generation
|
191 |
+
dataset:
|
192 |
+
name: STS
|
193 |
+
type: STS
|
194 |
+
metrics:
|
195 |
+
- name: Average pearson
|
196 |
+
type: pearson
|
197 |
+
value: 7.98
|
198 |
+
- task:
|
199 |
+
type: text-generation
|
200 |
+
dataset:
|
201 |
+
name: STS_finetuned
|
202 |
+
type: STS_finetuned
|
203 |
+
metrics:
|
204 |
+
- name: Average spearman
|
205 |
+
type: spearman
|
206 |
+
value: 71.75
|
207 |
+
- task:
|
208 |
+
type: text-generation
|
209 |
+
dataset:
|
210 |
+
name: STS_finetuned
|
211 |
+
type: STS_finetuned
|
212 |
+
metrics:
|
213 |
+
- name: Average pearson
|
214 |
+
type: pearson
|
215 |
+
value: 71.99
|
216 |
+
- task:
|
217 |
+
type: text-generation
|
218 |
+
dataset:
|
219 |
+
name: OpenLLM-Ro/ro_arc_challenge
|
220 |
+
type: OpenLLM-Ro/ro_arc_challenge
|
221 |
+
metrics:
|
222 |
+
- name: 0-shot
|
223 |
+
type: accuracy
|
224 |
+
value: 35.56
|
225 |
+
- name: 1-shot
|
226 |
+
type: accuracy
|
227 |
+
value: 36.42
|
228 |
+
- name: 3-shot
|
229 |
+
type: accuracy
|
230 |
+
value: 38.56
|
231 |
+
- name: 5-shot
|
232 |
+
type: accuracy
|
233 |
+
value: 38.39
|
234 |
+
- name: 10-shot
|
235 |
+
type: accuracy
|
236 |
+
value: 39.07
|
237 |
+
- name: 25-shot
|
238 |
+
type: accuracy
|
239 |
+
value: 39.67
|
240 |
+
- task:
|
241 |
+
type: text-generation
|
242 |
+
dataset:
|
243 |
+
name: OpenLLM-Ro/ro_mmlu
|
244 |
+
type: OpenLLM-Ro/ro_mmlu
|
245 |
+
metrics:
|
246 |
+
- name: 0-shot
|
247 |
+
type: accuracy
|
248 |
+
value: 25.82
|
249 |
+
- name: 1-shot
|
250 |
+
type: accuracy
|
251 |
+
value: 25.48
|
252 |
+
- name: 3-shot
|
253 |
+
type: accuracy
|
254 |
+
value: 27.61
|
255 |
+
- name: 5-shot
|
256 |
+
type: accuracy
|
257 |
+
value: 29.96
|
258 |
+
- task:
|
259 |
+
type: text-generation
|
260 |
+
dataset:
|
261 |
+
name: OpenLLM-Ro/ro_winogrande
|
262 |
+
type: OpenLLM-Ro/ro_winogrande
|
263 |
+
metrics:
|
264 |
+
- name: 0-shot
|
265 |
+
type: accuracy
|
266 |
+
value: 58.72
|
267 |
+
- name: 1-shot
|
268 |
+
type: accuracy
|
269 |
+
value: 58.88
|
270 |
+
- name: 3-shot
|
271 |
+
type: accuracy
|
272 |
+
value: 60.38
|
273 |
+
- name: 5-shot
|
274 |
+
type: accuracy
|
275 |
+
value: 59.19
|
276 |
+
- task:
|
277 |
+
type: text-generation
|
278 |
+
dataset:
|
279 |
+
name: OpenLLM-Ro/ro_hellaswag
|
280 |
+
type: OpenLLM-Ro/ro_hellaswag
|
281 |
+
metrics:
|
282 |
+
- name: 0-shot
|
283 |
+
type: accuracy
|
284 |
+
value: 55.85
|
285 |
+
- name: 1-shot
|
286 |
+
type: accuracy
|
287 |
+
value: 57.06
|
288 |
+
- name: 3-shot
|
289 |
+
type: accuracy
|
290 |
+
value: 57.52
|
291 |
+
- name: 5-shot
|
292 |
+
type: accuracy
|
293 |
+
value: 57.89
|
294 |
+
- name: 10-shot
|
295 |
+
type: accuracy
|
296 |
+
value: 57.79
|
297 |
+
- task:
|
298 |
+
type: text-generation
|
299 |
+
dataset:
|
300 |
+
name: OpenLLM-Ro/ro_gsm8k
|
301 |
+
type: OpenLLM-Ro/ro_gsm8k
|
302 |
+
metrics:
|
303 |
+
- name: 0-shot
|
304 |
+
type: accuracy
|
305 |
+
value: 0
|
306 |
+
- name: 1-shot
|
307 |
+
type: accuracy
|
308 |
+
value: 2.96
|
309 |
+
- name: 3-shot
|
310 |
+
type: accuracy
|
311 |
+
value: 4.62
|
312 |
+
- task:
|
313 |
+
type: text-generation
|
314 |
+
dataset:
|
315 |
+
name: LaRoSeDa_binary
|
316 |
+
type: LaRoSeDa_binary
|
317 |
+
metrics:
|
318 |
+
- name: 0-shot
|
319 |
+
type: macro-f1
|
320 |
+
value: 42.78
|
321 |
+
- name: 1-shot
|
322 |
+
type: macro-f1
|
323 |
+
value: 98
|
324 |
+
- name: 3-shot
|
325 |
+
type: macro-f1
|
326 |
+
value: 95.13
|
327 |
+
- name: 5-shot
|
328 |
+
type: macro-f1
|
329 |
+
value: 97.07
|
330 |
+
- task:
|
331 |
+
type: text-generation
|
332 |
+
dataset:
|
333 |
+
name: LaRoSeDa_multiclass
|
334 |
+
type: LaRoSeDa_multiclass
|
335 |
+
metrics:
|
336 |
+
- name: 0-shot
|
337 |
+
type: macro-f1
|
338 |
+
value: 46.41
|
339 |
+
- name: 1-shot
|
340 |
+
type: macro-f1
|
341 |
+
value: 67.36
|
342 |
+
- name: 3-shot
|
343 |
+
type: macro-f1
|
344 |
+
value: 65.16
|
345 |
+
- name: 5-shot
|
346 |
+
type: macro-f1
|
347 |
+
value: 65.23
|
348 |
+
- task:
|
349 |
+
type: text-generation
|
350 |
+
dataset:
|
351 |
+
name: WMT_EN-RO
|
352 |
+
type: WMT_EN-RO
|
353 |
+
metrics:
|
354 |
+
- name: 0-shot
|
355 |
+
type: bleu
|
356 |
+
value: 4.45
|
357 |
+
- name: 1-shot
|
358 |
+
type: bleu
|
359 |
+
value: 8.61
|
360 |
+
- name: 3-shot
|
361 |
+
type: bleu
|
362 |
+
value: 12.25
|
363 |
+
- name: 5-shot
|
364 |
+
type: bleu
|
365 |
+
value: 14.73
|
366 |
+
- task:
|
367 |
+
type: text-generation
|
368 |
+
dataset:
|
369 |
+
name: WMT_RO-EN
|
370 |
+
type: WMT_RO-EN
|
371 |
+
metrics:
|
372 |
+
- name: 0-shot
|
373 |
+
type: bleu
|
374 |
+
value: 1.29
|
375 |
+
- name: 1-shot
|
376 |
+
type: bleu
|
377 |
+
value: 10.78
|
378 |
+
- name: 3-shot
|
379 |
+
type: bleu
|
380 |
+
value: 16.82
|
381 |
+
- name: 5-shot
|
382 |
+
type: bleu
|
383 |
+
value: 23.24
|
384 |
+
- task:
|
385 |
+
type: text-generation
|
386 |
+
dataset:
|
387 |
+
name: XQuAD_EM
|
388 |
+
type: XQuAD_EM
|
389 |
+
metrics:
|
390 |
+
- name: 0-shot
|
391 |
+
type: exact_match
|
392 |
+
value: 5.29
|
393 |
+
- name: 1-shot
|
394 |
+
type: exact_match
|
395 |
+
value: 33.95
|
396 |
+
- name: 3-shot
|
397 |
+
type: exact_match
|
398 |
+
value: 39.24
|
399 |
+
- name: 5-shot
|
400 |
+
type: exact_match
|
401 |
+
value: 42.1
|
402 |
+
- task:
|
403 |
+
type: text-generation
|
404 |
+
dataset:
|
405 |
+
name: XQuAD_F1
|
406 |
+
type: XQuAD_F1
|
407 |
+
metrics:
|
408 |
+
- name: 0-shot
|
409 |
+
type: f1
|
410 |
+
value: 16.17
|
411 |
+
- name: 1-shot
|
412 |
+
type: f1
|
413 |
+
value: 51.84
|
414 |
+
- name: 3-shot
|
415 |
+
type: f1
|
416 |
+
value: 58.82
|
417 |
+
- name: 5-shot
|
418 |
+
type: f1
|
419 |
+
value: 61.29
|
420 |
+
- task:
|
421 |
+
type: text-generation
|
422 |
+
dataset:
|
423 |
+
name: STS
|
424 |
+
type: STS
|
425 |
+
metrics:
|
426 |
+
- name: 0-shot
|
427 |
+
type: spearman
|
428 |
+
value: -1.74
|
429 |
+
- name: 1-shot
|
430 |
+
type: spearman
|
431 |
+
value: 15.47
|
432 |
+
- name: 3-shot
|
433 |
+
type: spearman
|
434 |
+
value: 9.93
|
435 |
+
- task:
|
436 |
+
type: text-generation
|
437 |
+
dataset:
|
438 |
+
name: STS
|
439 |
+
type: STS
|
440 |
+
metrics:
|
441 |
+
- name: 0-shot
|
442 |
+
type: pearson
|
443 |
+
value: -1.4
|
444 |
+
- name: 1-shot
|
445 |
+
type: pearson
|
446 |
+
value: 15
|
447 |
+
- name: 3-shot
|
448 |
+
type: pearson
|
449 |
+
value: 10.33
|
450 |
+
datasets:
|
451 |
+
- uonlp/CulturaX
|
452 |
+
---
|
453 |
+
|
454 |
+
# Model Card for Model ID
|
455 |
+
|
456 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
457 |
+
|
458 |
+
RoLlama2 is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **foundational 7B model**. Links to other models can be found at the bottom of this page.
|
459 |
+
|
460 |
+
## Model Details
|
461 |
+
|
462 |
+
### Model Description
|
463 |
+
|
464 |
+
<!-- Provide a longer summary of what this model is. -->
|
465 |
+
OpenLLM represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants.
|
466 |
+
|
467 |
+
|
468 |
+
- **Developed by:** OpenLLM-Ro
|
469 |
+
<!-- - **Funded by [optional]:** [More Information Needed] -->
|
470 |
+
<!-- - **Shared by [optional]:** [More Information Needed] -->
|
471 |
+
<!-- - **Model type:** [More Information Needed] -->
|
472 |
+
- **Language(s):** Romanian
|
473 |
+
- **License:** Llama2 Community License Agreement
|
474 |
+
- **Continual pretrained from model:** [Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b-hf)
|
475 |
+
- **Trained using:** [CulturaX](https://huggingface.co/datasets/uonlp/CulturaX)
|
476 |
+
|
477 |
+
|
478 |
+
### Model Sources
|
479 |
+
|
480 |
+
<!-- Provide the basic links for the model. -->
|
481 |
+
|
482 |
+
- **Repository:** https://github.com/OpenLLM-Ro/llama-recipes
|
483 |
+
- **Paper:** https://arxiv.org/abs/2406.18266
|
484 |
+
|
485 |
+
## Intended Use
|
486 |
+
|
487 |
+
### Intended Use Cases
|
488 |
+
|
489 |
+
RoLlama2 is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat.
|
490 |
+
|
491 |
+
### Out-of-Scope Use
|
492 |
+
|
493 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
494 |
+
|
495 |
+
Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian.
|
496 |
+
|
497 |
+
|
498 |
+
|
499 |
+
## How to Get Started with the Model
|
500 |
+
|
501 |
+
Use the code below to get started with the model.
|
502 |
+
|
503 |
+
```python
|
504 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
505 |
+
|
506 |
+
tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoLlama2-7b-Base-2024-05-14")
|
507 |
+
model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoLlama2-7b-Base-2024-05-14")
|
508 |
+
|
509 |
+
input_text = "Mihai Eminescu a fost "
|
510 |
+
input_ids = tokenizer(input_text, return_tensors="pt")
|
511 |
+
|
512 |
+
outputs = model.generate(**input_ids, max_new_tokens=100)
|
513 |
+
print(tokenizer.decode(outputs[0]))
|
514 |
+
```
|
515 |
+
|
516 |
+
## Academic Benchmarks
|
517 |
+
|
518 |
+
<table>
|
519 |
+
<tbody>
|
520 |
+
<tr>
|
521 |
+
<td><strong>Model</strong></td>
|
522 |
+
<td><strong><center>Average</center></strong></td>
|
523 |
+
<td><strong><center>ARC</center></strong></td>
|
524 |
+
<td><strong><center>MMLU</center></strong></td>
|
525 |
+
<td><strong><center>Winogrande</center></strong></td>
|
526 |
+
<td><strong><center>Hellaswag</center></strong></td>
|
527 |
+
<td><strong><center>GSM8k</center></strong></td>
|
528 |
+
<td><strong><center>TruthfulQA</center></strong></td>
|
529 |
+
</tr>
|
530 |
+
<tr>
|
531 |
+
<td>Llama-2-7b</td><td><center>37.04</center></td><td><center>36.05</center></td><td><center><strong>33.66</strong></center></td><td><center>57.56</center></td><td><center>48.00</center></td><td><center><strong>4.75</strong></center></td><td><center>42.22</center></td>
|
532 |
+
</tr>
|
533 |
+
<tr>
|
534 |
+
<td><em>RoLlama2-7b-Base-2024-05-14</em></td><td><center><em><strong>38.03</strong></em></center></td><td><center><em><strong>37.95</strong></em></center></td><td><center><em>27.22</em></center></td><td><center><em><strong>59.29</strong></em></center></td><td><center><em><strong>57.22</strong></em></center></td><td><center><em>2.53</em></center></td><td><center><em><strong>44.00</strong></em></center></td>
|
535 |
+
</tr>
|
536 |
+
</tbody>
|
537 |
+
</table>
|
538 |
+
|
539 |
+
## Downstream Tasks
|
540 |
+
|
541 |
+
|
542 |
+
<table>
|
543 |
+
<tbody>
|
544 |
+
<tr>
|
545 |
+
<td></td>
|
546 |
+
<td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
|
547 |
+
<td colspan="4"><center><strong>WMT</strong></center></td>
|
548 |
+
</tr>
|
549 |
+
<tr>
|
550 |
+
<td></td>
|
551 |
+
<td colspan="2"><center><strong>Few-shot</strong></center></td>
|
552 |
+
<td colspan="2"><center><strong>Finetuned</strong></center></td>
|
553 |
+
<td colspan="2"><center><strong>Few-shot</strong></center></td>
|
554 |
+
<td colspan="2"><center><strong>Finetuned</strong></center></td>
|
555 |
+
</tr>
|
556 |
+
<tr>
|
557 |
+
<td><strong>Model</strong></td>
|
558 |
+
<td><center><strong>Binary<br>(Macro F1)</strong></center></td>
|
559 |
+
<td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
|
560 |
+
<td><center><strong>Binary<br>(Macro F1)</strong></center></td>
|
561 |
+
<td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
|
562 |
+
<td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
|
563 |
+
<td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
|
564 |
+
<td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
|
565 |
+
<td><center><strong>RO-EN<br>(Bleu)</strong></center>
|
566 |
+
</tr>
|
567 |
+
<tr>
|
568 |
+
<td>Llama-2-7b</td><td><center><strong>93.19</strong></center></td><td><center>54.11</center></td><td><center>98.43</center></td><td><center>87.22</center></td><td><center><strong>14.90</strong></center></td><td><center><strong>26.61</strong></center></td><td><center>24.95</center></td><td><center>39.09</center></td>
|
569 |
+
</tr>
|
570 |
+
<tr>
|
571 |
+
<td><em>RoLlama2-7b-Base-2024-05-14</em></td><td><center><em>83.25</em></center></td><td><center><em><strong>61.04</strong></em></center></td><td><center><em><strong>98.97</strong></em></center></td><td><center><em><strong>87.72</strong></em></center></td><td><center><em>10.01</em></center></td><td><center><em>13.03</em></center></td><td><center><em><strong>27.85</strong></em></center></td><td><center><em><strong>39.30</strong></em></center></td>
|
572 |
+
</tr>
|
573 |
+
</tbody>
|
574 |
+
</table>
|
575 |
+
|
576 |
+
|
577 |
+
<table>
|
578 |
+
<tbody>
|
579 |
+
<tr>
|
580 |
+
<td></td>
|
581 |
+
<td colspan="4"><center><strong>XQuAD</strong></center></td>
|
582 |
+
<td colspan="4"><center><strong>STS</strong></center></td>
|
583 |
+
</tr>
|
584 |
+
<tr>
|
585 |
+
<td></td>
|
586 |
+
<td colspan="2"><center><strong>Few-shot</strong></center></td>
|
587 |
+
<td colspan="2"><center><strong>Finetuned</strong></center></td>
|
588 |
+
<td colspan="2"><center><strong>Few-shot</strong></center></td>
|
589 |
+
<td colspan="2"><center><strong>Finetuned</strong></center></td>
|
590 |
+
</tr>
|
591 |
+
<tr>
|
592 |
+
<td><strong>Model</strong></td>
|
593 |
+
<td><center><strong>(EM)</strong></center></td>
|
594 |
+
<td><center><strong>(F1)</strong></center></td>
|
595 |
+
<td><center><strong>(EM)</strong></center></td>
|
596 |
+
<td><center><strong>(F1)</strong></center></td>
|
597 |
+
<td><center><strong>(Spearman)</strong></center></td>
|
598 |
+
<td><center><strong>(Pearson)</strong></center></td>
|
599 |
+
<td><center><strong>(Spearman)</strong></center></td>
|
600 |
+
<td><center><strong>(Pearson)</strong></center></td>
|
601 |
+
</tr>
|
602 |
+
<tr>
|
603 |
+
<td>Llama-2-7b</td><td><center><strong>38.91</strong></center></td><td><center><strong>56.82</strong></center></td><td><center>65.46</center></td><td><center>79.42</center></td><td><center><strong>9.08</strong></center></td><td><center><strong>9.07</strong></center></td><td><center><strong>79.93</strong></center></td><td><center><strong>81.08</strong></center></td>
|
604 |
+
</tr>
|
605 |
+
<tr>
|
606 |
+
<td><em>RoLlama2-7b-Base-2024-05-14</em></td><td><center><em>30.15</em></center></td><td><center><em>47.03</em></center></td><td><center><em><strong>67.06</strong></em></center></td><td><center><em><strong>79.96</strong></em></center></td><td><center><em>7.89</em></center></td><td><center><em>7.98</em></center></td><td><center><em>71.75</em></center></td><td><center><em>71.99</em></center></td>
|
607 |
+
</tr>
|
608 |
+
</tbody>
|
609 |
+
</table>
|
610 |
+
|
611 |
+
|
612 |
+
## RoLlama2 Model Family
|
613 |
+
|
614 |
+
| Model | Link |
|
615 |
+
|--------------------|:--------:|
|
616 |
+
|RoLlama2-7b-Base-2024-05-14 | [link](https://huggingface.co/OpenLLM-Ro/RoLlama2-7b-Base-2024-05-14) |
|
617 |
+
|RoLlama2-7b-Instruct-2024-05-14 | [link](https://huggingface.co/OpenLLM-Ro/RoLlama2-7b-Instruct-2024-05-14) |
|
618 |
+
|*RoLlama2-7b-Instruct-2024-10-09*| [link](https://huggingface.co/OpenLLM-Ro/RoLlama2-7b-Instruct-2024-10-09) |
|
619 |
+
|RoLlama2-7b-Instruct-DPO-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoLlama2-7b-Instruct-DPO-2024-10-09) |
|
620 |
+
|
621 |
+
## Citation
|
622 |
+
|
623 |
+
```
|
624 |
+
@misc{masala2024vorbecstiromanecsterecipetrain,
|
625 |
+
title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions},
|
626 |
+
author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea},
|
627 |
+
year={2024},
|
628 |
+
eprint={2406.18266},
|
629 |
+
archivePrefix={arXiv},
|
630 |
+
primaryClass={cs.CL},
|
631 |
+
url={https://arxiv.org/abs/2406.18266},
|
632 |
+
}
|
633 |
+
```
|
634 |
+
<!-- **APA:**
|
635 |
+
|
636 |
+
[More Information Needed] -->
|
added_tokens.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</s>": 2,
|
3 |
+
"<s>": 1,
|
4 |
+
"<unk>": 0
|
5 |
+
}
|
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "meta-llama/Llama-2-7b-hf",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 4096,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 11008,
|
13 |
+
"max_position_embeddings": 4096,
|
14 |
+
"model_type": "llama",
|
15 |
+
"num_attention_heads": 32,
|
16 |
+
"num_hidden_layers": 32,
|
17 |
+
"num_key_value_heads": 32,
|
18 |
+
"pretraining_tp": 1,
|
19 |
+
"rms_norm_eps": 1e-05,
|
20 |
+
"rope_scaling": null,
|
21 |
+
"rope_theta": 10000.0,
|
22 |
+
"tie_word_embeddings": false,
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.34.0",
|
25 |
+
"use_cache": true,
|
26 |
+
"vocab_size": 32000
|
27 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.34.0"
|
6 |
+
}
|
pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 26953662464
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "pytorch_model-00003-of-00003.bin",
|
7 |
+
"model.embed_tokens.weight": "pytorch_model-00001-of-00003.bin",
|
8 |
+
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
17 |
+
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
26 |
+
"model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
35 |
+
"model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
44 |
+
"model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
53 |
+
"model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
62 |
+
"model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
71 |
+
"model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
80 |
+
"model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
89 |
+
"model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
98 |
+
"model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
107 |
+
"model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
116 |
+
"model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
125 |
+
"model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
134 |
+
"model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
143 |
+
"model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
152 |
+
"model.layers.23.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
161 |
+
"model.layers.24.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
170 |
+
"model.layers.25.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
179 |
+
"model.layers.26.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
188 |
+
"model.layers.27.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
197 |
+
"model.layers.28.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
206 |
+
"model.layers.29.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
215 |
+
"model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
224 |
+
"model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
233 |
+
"model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
242 |
+
"model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
243 |
+
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
244 |
+
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
245 |
+
"model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
246 |
+
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
247 |
+
"model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
248 |
+
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
249 |
+
"model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
250 |
+
"model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
251 |
+
"model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
252 |
+
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
253 |
+
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
254 |
+
"model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
255 |
+
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
256 |
+
"model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
257 |
+
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
258 |
+
"model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
259 |
+
"model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
260 |
+
"model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
261 |
+
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
262 |
+
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
263 |
+
"model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
264 |
+
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
265 |
+
"model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
266 |
+
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
267 |
+
"model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
268 |
+
"model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
269 |
+
"model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
270 |
+
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
271 |
+
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
272 |
+
"model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
273 |
+
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
274 |
+
"model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
275 |
+
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
276 |
+
"model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
277 |
+
"model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
278 |
+
"model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
279 |
+
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
280 |
+
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
281 |
+
"model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
282 |
+
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
283 |
+
"model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
284 |
+
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
285 |
+
"model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
286 |
+
"model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
287 |
+
"model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
288 |
+
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
289 |
+
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
290 |
+
"model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
291 |
+
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
292 |
+
"model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
293 |
+
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
294 |
+
"model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
295 |
+
"model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
296 |
+
"model.norm.weight": "pytorch_model-00003-of-00003.bin"
|
297 |
+
}
|
298 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<unk>",
|
4 |
+
"<s>",
|
5 |
+
"</s>"
|
6 |
+
],
|
7 |
+
"bos_token": "<s>",
|
8 |
+
"eos_token": "</s>",
|
9 |
+
"pad_token": "<unk>",
|
10 |
+
"unk_token": "<unk>"
|
11 |
+
}
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
tokenizer_config.json
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
}
|
29 |
+
},
|
30 |
+
"additional_special_tokens": [
|
31 |
+
"<unk>",
|
32 |
+
"<s>",
|
33 |
+
"</s>"
|
34 |
+
],
|
35 |
+
"bos_token": "<s>",
|
36 |
+
"clean_up_tokenization_spaces": false,
|
37 |
+
"eos_token": "</s>",
|
38 |
+
"legacy": false,
|
39 |
+
"model_max_length": 1000000000000000019884624838656,
|
40 |
+
"pad_token": "<unk>",
|
41 |
+
"padding_side": "right",
|
42 |
+
"sp_model_kwargs": {},
|
43 |
+
"spaces_between_special_tokens": false,
|
44 |
+
"tokenizer_class": "LlamaTokenizer",
|
45 |
+
"tokenizer_file": null,
|
46 |
+
"unk_token": "<unk>",
|
47 |
+
"use_default_system_prompt": true
|
48 |
+
}
|
train_params.yaml
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
batch_size_training: '32'
|
2 |
+
checkpoint_type: StateDictType.FULL_STATE_DICT
|
3 |
+
dataset: foundational_dataset
|
4 |
+
dist_checkpoint_folder: fine-tuned
|
5 |
+
dist_checkpoint_root_folder: test_run_save
|
6 |
+
enable_fsdp: 'True'
|
7 |
+
freeze_layers: 'False'
|
8 |
+
fsdp_activation_checkpointing: 'True'
|
9 |
+
gamma: '0.9'
|
10 |
+
load_peft_model: 'False'
|
11 |
+
low_cpu_fsdp: 'False'
|
12 |
+
lr: '0.0001'
|
13 |
+
micro_batch_size: '32'
|
14 |
+
mixed_precision: 'True'
|
15 |
+
model_name: models/v3/llama7b-full-1e-4_low-chunk1024-009-017
|
16 |
+
num_epochs: '1'
|
17 |
+
num_freeze_layers: '1'
|
18 |
+
num_workers_dataloader: '2'
|
19 |
+
one_gpu: 'False'
|
20 |
+
optimizer: AdamW
|
21 |
+
output_dir: PATH/to/save/PEFT/model
|
22 |
+
peft_method: lora
|
23 |
+
pure_bf16: 'True'
|
24 |
+
quantization: 'False'
|
25 |
+
run_validation: 'True'
|
26 |
+
save_model: 'True'
|
27 |
+
save_optimizer: 'False'
|
28 |
+
seed: '42'
|
29 |
+
sharding_strategy: ShardingStrategy.FULL_SHARD
|
30 |
+
type_of_model: foundational
|
31 |
+
use_fast_kernels: 'False'
|
32 |
+
use_fp16: 'False'
|
33 |
+
use_peft: 'False'
|
34 |
+
val_batch_size: '64'
|
35 |
+
weight_decay: '0.0'
|