VideoMAEv2-giant / modeling_videomaev2.py
ynhe's picture
[Init] upload model
4c3536f verified
# --------------------------------------------------------
# Based on BEiT, timm, DINO and DeiT code bases
# https://github.com/microsoft/unilm/tree/master/beit
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
# https://github.com/facebookresearch/deit
# https://github.com/facebookresearch/dino
# --------------------------------------------------------'
from functools import partial
import logging
logger = logging.getLogger(__name__)
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as cp
from transformers import AutoConfig, PreTrainedModel
from timm.layers import drop_path, to_2tuple, trunc_normal_
from .modeling_config import VideoMAEv2Config
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 400,
'input_size': (3, 224, 224),
'pool_size': None,
'crop_pct': .9,
'interpolation': 'bicubic',
'mean': (0.5, 0.5, 0.5),
'std': (0.5, 0.5, 0.5),
**kwargs
}
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
def extra_repr(self) -> str:
return 'p={}'.format(self.drop_prob)
class Mlp(nn.Module):
def __init__(self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
# x = self.drop(x)
# commit this for the orignal BERT implement
x = self.fc2(x)
x = self.drop(x)
return x
class CosAttention(nn.Module):
def __init__(self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.,
proj_drop=0.,
attn_head_dim=None):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
if attn_head_dim is not None:
head_dim = attn_head_dim
all_head_dim = head_dim * self.num_heads
# self.scale = qk_scale or head_dim**-0.5
# DO NOT RENAME [self.scale] (for no weight decay)
if qk_scale is None:
self.scale = nn.Parameter(
torch.log(10 * torch.ones((num_heads, 1, 1))),
requires_grad=True)
else:
self.scale = qk_scale
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
if qkv_bias:
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
else:
self.q_bias = None
self.v_bias = None
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(all_head_dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
qkv_bias = None
if self.q_bias is not None:
qkv_bias = torch.cat(
(self.q_bias,
torch.zeros_like(self.v_bias,
requires_grad=False), self.v_bias))
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[
2] # make torchscript happy (cannot use tensor as tuple)
attn = (
F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1))
# torch.log(torch.tensor(1. / 0.01)) = 4.6052
logit_scale = torch.clamp(self.scale, max=4.6052).exp()
attn = attn * logit_scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Attention(nn.Module):
def __init__(self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.,
proj_drop=0.,
attn_head_dim=None):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
if attn_head_dim is not None:
head_dim = attn_head_dim
all_head_dim = head_dim * self.num_heads
self.scale = qk_scale or head_dim**-0.5
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
if qkv_bias:
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
else:
self.q_bias = None
self.v_bias = None
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(all_head_dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
qkv_bias = None
if self.q_bias is not None:
qkv_bias = torch.cat(
(self.q_bias,
torch.zeros_like(self.v_bias,
requires_grad=False), self.v_bias))
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[
2] # make torchscript happy (cannot use tensor as tuple)
q = q * self.scale
attn = (q @ k.transpose(-2, -1))
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(self,
dim,
num_heads,
mlp_ratio=4.,
qkv_bias=False,
qk_scale=None,
drop=0.,
attn_drop=0.,
drop_path=0.,
init_values=None,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
attn_head_dim=None,
cos_attn=False):
super().__init__()
self.norm1 = norm_layer(dim)
if cos_attn:
self.attn = CosAttention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
attn_head_dim=attn_head_dim)
else:
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
attn_head_dim=attn_head_dim)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(
drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop)
if init_values > 0:
self.gamma_1 = nn.Parameter(
init_values * torch.ones((dim)), requires_grad=True)
self.gamma_2 = nn.Parameter(
init_values * torch.ones((dim)), requires_grad=True)
else:
self.gamma_1, self.gamma_2 = None, None
def forward(self, x):
if self.gamma_1 is None:
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
else:
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x)))
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
return x
class PatchEmbed(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self,
img_size=224,
patch_size=16,
in_chans=3,
embed_dim=768,
num_frames=16,
tubelet_size=2):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
num_spatial_patches = (img_size[0] // patch_size[0]) * (
img_size[1] // patch_size[1])
num_patches = num_spatial_patches * (num_frames // tubelet_size)
self.img_size = img_size
self.tubelet_size = tubelet_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv3d(
in_channels=in_chans,
out_channels=embed_dim,
kernel_size=(self.tubelet_size, patch_size[0], patch_size[1]),
stride=(self.tubelet_size, patch_size[0], patch_size[1]))
def forward(self, x, **kwargs):
B, C, T, H, W = x.shape
assert H == self.img_size[0] and W == self.img_size[
1], f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
# b, c, l -> b, l, c
x = self.proj(x).flatten(2).transpose(1, 2)
return x
# sin-cos position encoding
# https://github.com/jadore801120/attention-is-all-you-need-pytorch/blob/master/transformer/Models.py#L31
def get_sinusoid_encoding_table(n_position, d_hid):
''' Sinusoid position encoding table '''
# TODO: make it with torch instead of numpy
def get_position_angle_vec(position):
return [
position / np.power(10000, 2 * (hid_j // 2) / d_hid)
for hid_j in range(d_hid)
]
sinusoid_table = np.array(
[get_position_angle_vec(pos_i) for pos_i in range(n_position)])
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
return torch.tensor(
sinusoid_table, dtype=torch.float, requires_grad=False).unsqueeze(0)
class VisionTransformer(nn.Module):
""" Vision Transformer with support for patch or hybrid CNN input stage
"""
def __init__(self,
img_size=224,
patch_size=16,
in_chans=3,
num_classes=1000,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4.,
qkv_bias=False,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.,
head_drop_rate=0.,
norm_layer=nn.LayerNorm,
layer_norm_eps=1e-12,
init_values=0.,
use_learnable_pos_emb=False,
init_scale=0.,
num_frames=16,
tubelet_size=2,
use_mean_pooling=True,
with_cp=False,
cos_attn=False):
super().__init__()
self.num_classes = num_classes
# num_features for consistency with other models
self.num_features = self.embed_dim = embed_dim
self.tubelet_size = tubelet_size
self.patch_embed = PatchEmbed(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
num_frames=num_frames,
tubelet_size=tubelet_size)
num_patches = self.patch_embed.num_patches
self.with_cp = with_cp
norm_layer = partial(eval(norm_layer), eps=layer_norm_eps)
if use_learnable_pos_emb:
self.pos_embed = nn.Parameter(
torch.zeros(1, num_patches, embed_dim))
else:
# sine-cosine positional embeddings is on the way
self.pos_embed = get_sinusoid_encoding_table(
num_patches, embed_dim)
self.pos_drop = nn.Dropout(p=drop_rate)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)
] # stochastic depth decay rule
self.blocks = nn.ModuleList([
Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
init_values=init_values,
cos_attn=cos_attn) for i in range(depth)
])
self.norm = nn.Identity() if use_mean_pooling else norm_layer(
embed_dim)
self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None
self.head_dropout = nn.Dropout(head_drop_rate)
self.head = nn.Linear(
embed_dim, num_classes) if num_classes > 0 else nn.Identity()
if use_learnable_pos_emb:
trunc_normal_(self.pos_embed, std=.02)
self.apply(self._init_weights)
if num_classes > 0:
self.head.weight.data.mul_(init_scale)
self.head.bias.data.mul_(init_scale)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def get_num_layers(self):
return len(self.blocks)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(
self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def forward_features(self, x):
B = x.size(0)
x = self.patch_embed(x)
if self.pos_embed is not None:
x = x + self.pos_embed.expand(B, -1, -1).type_as(x).to(
x.device).clone().detach()
x = self.pos_drop(x)
for blk in self.blocks:
if self.with_cp:
x = cp.checkpoint(blk, x)
else:
x = blk(x)
if self.fc_norm is not None:
return self.fc_norm(x.mean(1))
else:
return self.norm(x[:, 0])
def forward(self, x):
x = self.forward_features(x)
x = self.head_dropout(x)
x = self.head(x)
return x
class VideoMAEv2(PreTrainedModel):
config_class = VideoMAEv2Config
def __init__(self, config=None):
super().__init__(config=config)
self.model_config = config.model_config
logger.info("Model config: {}".format(self.model_config))
self.model = VisionTransformer(**self.model_config)
def forward(self, pixel_values):
return self.model(pixel_values)
def extract_features(self, pixel_values):
return self.model.forward_features(pixel_values)
def vit_small_patch16_224(pretrained=False, **kwargs):
model = VisionTransformer(
patch_size=16,
embed_dim=384,
depth=12,
num_heads=6,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs)
model.default_cfg = _cfg()
return model
def vit_base_patch16_224(pretrained=False, **kwargs):
model = VisionTransformer(
patch_size=16,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs)
model.default_cfg = _cfg()
return model
# @register_model
def vit_huge_patch16_224(pretrained=False, **kwargs):
model = VisionTransformer(
patch_size=16,
embed_dim=1280,
depth=32,
num_heads=16,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs)
model.default_cfg = _cfg()
return model
# @register_model
def vit_giant_patch14_224(pretrained=False, **kwargs):
model = VisionTransformer(
patch_size=14,
embed_dim=1408,
depth=40,
num_heads=16,
mlp_ratio=48 / 11,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs)
model.default_cfg = _cfg()
return model